
JULY 2008

CONTENTS IN THIS ISSUE

IS
S

N
 1

74
9-

70
27

Fighting malware and spam

2 COMMENT

 A commitment to quality and reliability

3 NEWS

 IT heavyweights combine forces to fi ght
 cyber crime

 Liar, liar

 Fast fl ux trojan author in court

3 VIRUS PREVALENCE TABLE

4 VIRUS ANALYSIS

 The road less truvelled: W32/Truvel

 FEATURES

6 New memory persistence threats

10 Reversing Python modules

13 Advertising database poisoning

16 PRODUCT REVIEW

 Sunbelt Software VIPRE Antivirus +
 Antispyware

20 END NOTES & NEWS

MEMORY GAME
Eric Filiol describes a set of computer memory
weaknesses that could enable the theft of sensitive
data via malware attacks.
page 6

SNAKES AND LADDERS
The object-oriented programming language
Python can be used for many kinds of software
development – potentially including malware
development. Aleksander Czarnowski believes in
being prepared and provides a brief overview of
how to reverse engineer a Python module.
page 10

THE WAITING GAME
This month John Hawes got
his hands on a beta version of
the long-awaited VIPRE from
anti-spyware expert Sunbelt
Software and found it to be
well worth the wait.
page 16

This month: anti-spam news and events, and
Paul Baccas questions whether spear phishing is on
the rise.

2 JULY 2008

COMMENT

Editor: Helen Martin

Technical Consultant: John Hawes

Technical Editor: Morton Swimmer

Consulting Editors:

Nick FitzGerald, Independent consultant, NZ

Ian Whalley, IBM Research, USA

Richard Ford, Florida Institute of Technology, USA

A COMMITMENT TO QUALITY
AND RELIABILITY
The VB100 certifi cation system has come under fi re in
recent weeks, with much of the criticism focused on
the WildList and its suitability as a basis for testing.
It became quite clear from the stories that were
published that there are several common misconceptions
surrounding both the intended purpose of the VB100
certifi cation, and in particular the WildList.

One of the central criticisms levelled at the WildList
is that it does not include every piece of malware. To
do so, of course, would be an immeasurably huge task
beyond even the vast resources of large globe-straddling
corporations. It would also be quite beside the point of
both the WildList and the certifi cation schemes that rely
on its steady and regular output.

There have been numerous other criticisms of the
WildList, most of which focus on the range of malware
types covered by the list and the activeness of its
reporting sources. These are issues into which the team
behind the WildList are investing considerable effort to
address. But even once the full range of improvements
are fully on stream, the WildList will never pretend
to cover the gamut of malicious software; rather it is
intended to provide a limited, but unquestionable subset
of the malware problem, containing items which are
guaranteed to be affecting a signifi cant proportion of
real-world users and represented by a set of rigorously
validated master samples.

Tests that pit products against the WildList have never
claimed to prove that a given product can detect all
known malware (which would be impossible to prove)
and they do not attempt to rank products against one
another on the basis of detecting more or fewer of the
samples listed. The purpose of the VB100 and similar
certifi cation schemes is to provide a regular measure of
the competence, reliability and credibility of software
vendors in the security fi eld – something which has
become more important than ever in recent years with
the growing tide of suspect software claiming to detect
and remove malware.

Products are expected to be able to pass VB’s tests, and to
pass regularly. With the level of co-operation and sample
sharing going on across the industry, nothing on the list
should be new to vendors, and with the comparatively tiny
resources of the VB test lab in relation to the extensive
research labs that AV vendors have at their disposal, no
amount of replication of complex viruses carried out by
VB should be beyond the capabilities of a commercial
malware lab.

Passing, or even failing a single VB100 test means
little in isolation – it is all about maintaining a steady
record of passes over time, to demonstrate a long-term
commitment to quality and reliability.

Of course, beyond these issues, there are far more
complex and diffi cult problems facing testers. An
ever-growing arsenal of weapons is being implemented
in a diverse range of fashions as products adapt to
combat the evolving threat. Testing these new weapons
– and just as importantly interpreting and presenting the
results in a manner comprehensible to the end-user – is
a hard but vital task, and one that VB, like all testing
bodies, is facing up to. We are hard at work developing
a range of improvements and additions to the data we
provide to our readers, and are currently hiring extra
hands to cope with the requirements of testing a wider
range of criteria and maintaining a broader and more
up-to-the-minute sample collection.

For any such plan to work requires the input and
co-operation of experts from across the industry, pooling
both wisdom and resources for the greater good. Groups
such as AMTSO provide great hope for the future, and a
number of the presentations at this year’s VB conference
will focus on the subject of testing. As we strive to provide
useful and trustworthy data on the protection offered by
a growing range of solutions to the security problem,
we rely on the support of those whose performance we
measure, as they rely on independent tests to keep them
informed of their successes and failings. As always, we
gladly welcome new ideas and constructive criticism.

‘The purpose of the VB100 is
to provide a regular measure of
the competence, reliability and
credibility of software vendors in
the security fi eld.’
John Hawes, Virus Bulletin

3JULY 2008

VIRUS BULLETIN www.virusbtn.com

NEWS

Prevalence Table – May 2008

Malware Type %

NetSky Worm 25.20%

Agent Trojan 15.68%

Rays/Traxg/Wukill Worm 10.12%

Mytob Worm 9.38%

OnlineGames Trojan 8.03%

Cutwail/Pandex/Pushdo Trojan 7.01%

Virut Virus 4.34%

Bifrose/Pakes Trojan 3.99%

Mydoom Worm 3.46%

Bagle Worm 2.69%

Zafi Worm 1.89%

Zlob/Tibs Trojan 1.40%

Grew Worm 1.02%

Sality Virus 0.84%

Mywife/Nyxem Worm 0.65%

Stration/Warezov Worm 0.39%

Nuwar/Peacomm/Zhelatin Trojan 0.37%

Bugbear Worm 0.34%

Lineage/Magania Trojan 0.29%

Small Trojan 0.29%

Alman Worm 0.27%

Feebs Worm 0.22%

Klez Worm 0.21%

MyLife Worm 0.18%

Chir Worm 0.14%

Parite Worm 0.14%

Grum Worm 0.13%

Bagz Worm 0.13%

Nimda Worm 0.12%

FunLove Worm 0.12%

Womble Worm 0.11%

Vote Worm 0.08%

Delf Trojan 0.07%

Others[1] 0.71%

Total 100.00%

[1]Readers are reminded that a complete listing is posted at
http://www.virusbtn.com/Prevalence/.

IT HEAVYWEIGHTS COMBINE FORCES TO
FIGHT CYBER CRIME
A new security industry consortium was formed last month to
provide a forum for IT vendor companies to work together in
order to address multi-vendor security threats. The Industry
Consortium for Advancement of Security on the Internet
(ICASI) is a collaboration between Cisco, International
Business Machines, Intel, Juniper Networks and Microsoft,
and is organised around four central principles: reducing
security threat impact and improving customer security;
improving the effi ciency and effectiveness of multi-vendor
threat resolution and security response practices; creating a
unique trusted environment for the sharing of information
between vendors; and leveraging the expertise of IT
companies from across the world to innovate security
response excellence. The organization plans to share its fi rst
accomplishments in late 2008.

LIAR, LIAR
CEO of Trend Micro Eva Chen surprised many last month
when she stated in an interview with ZDNet that the entire
anti-virus industry has been lying to its customers for the
past 20 years.

Trend has recently announced that it is heading in a
new direction (into the cloud) with its malware analysis
– reasoning that, now that faster Internet connections are
available worldwide, it is faster to throw an unknown
sample into the cloud to perform a suspected malware check
than to initiate and execute a sandbox heuristic environment
on the desktop.

FAST FLUX TROJAN AUTHOR IN COURT
A 19-year-old is due to plead guilty in a US court to one
count of computer assisted fraud after having admitted to
creating the Nugache trojan and using it to create one of the
fi rst fast fl ux botnets. The trojan spread through AOL instant
messenger and, once clicked on, added the victim machine
to a zombie network that used a peer-to-peer mechanism to
communicate rather than relying on a single command and
control channel.

According to a plea bargain agreement Jason Michael
Milmont ran a botnet using the trojan which, at its peak,
consisted of between 5,000 and 15,000 computers. He used
the botnet to obtain victims’ credit card details and steal
thousands of dollars by making online purchases using the
stolen credentials. The botnet was also used to launch DDoS
attacks against an online business.

Milmont faces up to fi ve years in prison, a $250,000 fi ne
and almost $74,000 restitution.

http://resources.zdnet.co.uk/articles/features/0,1000002000,39440184,00.htm
http://www.virusbtn.com/resources/malwareDirectory/prevalence/index

VIRUS BULLETIN www.virusbtn.com

4 JULY 2008

THE ROAD LESS TRUVELLED:
W32/TRUVEL
Peter Ferrie
Microsoft, USA

Everything old is new again – at least for some virus
writers.

By the addition of a relocation table, Vista executables
can be confi gured to use a dynamic image base. That
essentially turns them into executable DLLs. Now a
virus has come along that has made a ‘breakthrough’
by infecting these executables – at least it would be a
breakthrough if it weren’t for the fact that relocatable
executables have been supported since Windows 2000
(ASLR in 1999!), and we have seen plenty of viruses
that can infect DLLs. What’s more, applications can have
different image bases even without a relocation table,
which from the virus’s point of view amounts to the
same thing. There is no need for a virus to carry absolute
addresses – the alternative is a technique called ‘relative
addressing’.

LOCK AND LOAD
The virus, which we call W32/Truvel, begins by saving
all registers and fl ags using the ‘pusha’ and ‘pushf’
instructions, as well as saving the ebp register explicitly
(perhaps the virus author thought that the ‘pusha’
instruction was not suffi cient). Then the virus determines
its load address. This can be done simply by using a
call → pop sequence, but the virus author seems to have
wanted to make it more complicated. In this case, the load
address is determined by calling a routine that sets up a
structured exception handler, then intentionally causes an
exception.

The handler receives control and retrieves the pointer to the
context structure. It retrieves the original esp register value
from the context structure, then fetches the return address
from the stack and uses it to calculate the delta offset.
The offset is stored in the ebp register within the context
structure. Then the handler adjusts the eip register value
in the context structure in order to skip the instruction that
caused the exception, and returns control to the operating
system to resume execution.

Interestingly, the handler contains an instruction to retrieve
the base address of the Process Environment Block, but
does nothing further with it. It is unclear what purpose
this might have served in an exception handler. The fi rst
version of the virus also contains a check for the presence
of a debugger by examining the ‘BeingDebugged’ fl ag in

the Process Environment Block, but there is no branch
instruction to take action if the fl ag is set – perhaps it was
removed while debugging, and the virus author forgot to
restore it. In the second variant of the virus the sequence has
been removed completely.

SUCH HOSTILITY

Upon returning from the exception handler, the virus
checks for the presence of a debugger by examining the
‘BeingDebugged’ fl ag in the Process Environment Block. If
a debugger is detected, then the virus branches intentionally
to an invalid address (which is the value of the efl ags
register), and the process terminates.

CRASH AND BURN

If no debugger is detected, the virus saves two image base
values on the stack: the image base value from the Process
Environment Block and the kernel32.dll image base
value which it retrieves from the InLoadOrderModuleList
structure. This can lead to a problem, but only in the most
unlikely circumstances, such as a bad memory layout in
an emulator. Part of the problem is that if the kernel32.dll
image base does not contain the right signatures
(i.e. beginning with ‘MZ’, and with the lfanew fi eld
pointing to the PE header), then the virus attempts to
clean up and run the host. The other part of the problem
is that, at that point, no API addresses have been
retrieved, so the cleanup will probably cause the
application to crash.

In case the addresses saved during replication happen
to match, the virus attempts to free two memory blocks
that it has not yet allocated. This may not cause a crash,
but another problem is caused by the fact that the two
image base values that were saved onto the stack are
not removed prior to the virus attempting to restore the
registers and fl ags – which results in register corruption.
However, even that might not be enough to cause a crash.
The fatal blow comes in the form of the host entrypoint
not having been adjusted according to the image base
value, so the virus always branches to an invalid memory
address and crashes.

Another bug exists in the code that attempts to locate the
GetProcAddress() API. The virus loops through all of the
APIs until GetProcAddress() is found. However, if for
some reason the function is not found and the loop exits,
the code continues its execution at the same location as
that which is reached if the function is found. The result is
that the virus resolves to an address which will likely point
to an invalid memory address and cause a crash.

VIRUS ANALYSIS

VIRUS BULLETIN www.virusbtn.com

5JULY 2008

PROTECT AND SERVE

The virus calls VirtualProtect() to write-enable its code.
This is the result of an anti-heuristic effect which will be
explained below. If the call to VirtualProtect() fails for some
reason, then, as above, the virus branches to the cleanup
routine and crashes.

At this point, the virus removes the image base values
from the stack, and adjusts the host entrypoint according
to the image base value. Then comes some code of great
silliness:

The virus wants to retrieve the addresses of some
functions from kernel32.dll. While it is a simple matter
to construct one relative pointer to the list of names and
one relative pointer to the location at which to store the
addresses, the virus writer chose another method. The
virus carries a table of pairs of absolute addresses. One
half of the pair points within the virus code to the name of
the function to retrieve from kernel32.dll, while the other
half points within the virus code to the location at which
to store the retrieved address. Each of the addresses must
be adjusted individually according to the delta offset, in
order to locate the appropriate data. If any of the functions
cannot be resolved, then the virus branches to the cleanup
routine and attempts to free two memory blocks that it has
not yet allocated. The list of functions includes entries that
the virus does not even use.

LOSING MY MEMORY

The virus calls a function twice to allocate two blocks
of memory for itself. However, after each call comes a
check for failure. If the fi rst allocation fails, then the virus
branches to the cleanup routine and attempts to free the
second block which it has not yet allocated.

If the allocations succeed, then the virus searches in the
current directory for all fi les whose suffi x is ‘.exe’. For
each fi le that is found, the virus opens it and reads some
data into one of the memory blocks. The virus checks
for the ‘MZ’ signature, and the second variant includes
some bounds checking on the lfanew fi eld value prior to
checking for the PE signature. The problem is that the
bounds checking is incorrect.

Instead of checking whether the lfanew fi eld value plus the
size of the signature is not greater than the size of the block,
the virus attempts to check only if the lfanew fi eld value is
less than the size of the block – and it even gets that wrong.
The virus checks that the lfanew fi eld value is not greater
than the size of the block. This allows for an lfanew value
that is exactly equal to the size of the block – also known as
an off-by-one bug.

The problem is compounded by the fact that no further
bounds checking is performed, leading to the assumption
that if the PE header signature is within the block, then
the entire PE header and the section table must be within
the block.

EVUL IS AS EVUL DOES

The infection marker for the virus is a section named
‘Evul’, which is the name of the virus author. If no
such section exists, then the virus simply appends one,
without regard to the possible overfl ow of the block or the
overwriting of the data in the fi rst section. The virus then
seeks the end of the fi le and calculates a new size according
to the FileAlignment fi eld value. If the fi le size was not
aligned before, then the virus attempts to write enough data
to align it. However, the stack is the source of the data to
write, and if the amount of data to write is large enough,
then it will fail. This result is not checked.

The virus calculates an aligned SizeOfRawData value
for the original last section. If the value was not aligned
already, then the virus replaces the old value with the new
one, and applies the difference to the SizeOfImage value.
This is another bug, since the SizeOfImage value comes
from the sum of the VirtualSize values, not the sum of the
SizeOfRawData values.

BACK AND FILL

The rest of the data for the new section are fi lled in at
this point. The virtual address is calculated by aligning
the VirtualSize of the previous section. The section
characteristics specify a section that is read-only and
executable. In the past, it was common for viruses to make
the last section writable when they infected a fi le. It became
such a common technique that some anti-virus programs
still use it as a rule for performing more thorough scans of
fi les. As a result, the absence of the writable bit can help
some viruses to hide, at least for a while.

Next, the virus zeroes the LoadConfi g and BoundImport
data directory entries in the PE header. This has the effect of
disabling the Safe Exception Handling, since the entries are
located inside the LoadConfi g data.

Finally, the virus writes itself to the fi le, updates the
entrypoint to point to the new section, and writes the new
PE header to the fi le. Then the virus searches for another
fi le to infect.

The virus has no intentional payload, however its many
bugs are suffi cient to produce some surprises – it’s amazing
that the virus replicates at all.

VIRUS BULLETIN www.virusbtn.com

6 JULY 2008

NEW MEMORY PERSISTENCE
THREATS
Eric Filiol
ESAT, France

Recent research has shown that,
contrary to popular belief, the
content of computer memories
(RAM) is not erased when a
computer is shut down. Different
kinds of data can survive even
after events that should normally
result in the RAM being erased
and reset to zero: program
termination, shutdown or
switching off the computer. The

survival of data in RAM may not only affect the security of
cryptographic applications but may also be used effi ciently
to design new, powerful malware threats.

This article fi rst presents an in-depth analysis of computer
memory weaknesses that could enable the theft of
sensitive data via malware attacks. Most of these attacks
are made possible due to the persistence properties of
modern computer memory modules. In the second part
of the article, we present different attack methods that
have been identifi ed and tested and which could be used
maliciously. In the fi nal part we present some tools
and security policy enhancements that should greatly
contribute to preventing or limiting those attacks.

THE PROBLEM: PERSISTENCE OF
COMPUTER MEMORY MODULES (RAM)

State of the art: memory remanence
For a long time it was widely believed that computer
memory modules (aka Random Access Memory or RAM)
were erased (reset to zero) immediately after a program
terminates or a computer is shut down, thus causing
their content to disappear from the computer. However,
a number of studies have shown this assumption to
be partially wrong. A number of studies [1–3] have
identifi ed risks attached to what is known as memory
remanence:

‘...Ordinary DRAMs typically lose their contents
gradually over a period of seconds, even at standard
operating temperatures and even if the chips are removed
from the motherboard, and data will persist for minutes
or even hours if the chips are kept at low temperatures.
Residual data can be recovered using simple,

non destructive techniques that require only momentary
physical access to the machine…’ [3]

The authors of [3] observed a data remanence effect
at normal operating temperatures (between 25.5 °C
and 41.1 °C) after 2.5 to 35 seconds (depending on the
computer) with a binary error rate ranging from 41% to
50%. They managed to increase this remanence time to 60
seconds with a very negligible error rate, simply by cooling
the RAM at a temperature of -50 °C.

From those results, the researchers identifi ed a number
of security risks with respect to data remanence. In
particular, they explained how secret cryptographic keys
could illegitimately be retrieved by exploiting the RAM
remanence property. Despite the undisputed interest of
this study, its operational scope is rather limited: the
attacker must have physical access and must cool the
RAM immediately after a sensitive application has been
executed (e.g. encryption/decryption). Except in the case
of investigation by police forces, this attack remains of
theoretical interest only.

At the time of publication of [3], another team was working
on the same subject but with a broader, more operational
approach and at normal operating temperatures by
considering the concept of RAM persistence [4].

Memory data persistence

RAM data remanence considers only the physical,
electronic effects that enable data to survive temporarily
in RAM. But data disappearing from memory does not
necessarily mean that the data has disappeared from the
computer, and in many cases, memory contents remain
available inside the computer for a very long time: we call
this memory data persistence. Let us adopt the following
defi nition:

Memory data persistence [4]: the set of both physical
(remanence) and operating system effects/mechanisms that
cause data to survive in RAM and/or in a computer after a
program terminates or a computer is shut down.

Without entering into too much detail, besides the single
remanence effects that have been confi rmed and developed
further, we have identifi ed a number of other mechanisms
which preserve the content of memory modules. The main
ones can be summarized as follows:

• Swap fi les (the pagefi le.sys fi le under Windows, and the
swap partition under Linux) generally contain all or part
of the memory.

• Hibernation fi les (the hiberfi l.sys fi le under Windows)
contain a lot of memory data.

FEATURE 1

VIRUS BULLETIN www.virusbtn.com

7JULY 2008

• The Windows memory dump fi le (MEMORY.dmp)
contains the whole RAM content.

Table 1 summarizes the level of computer security risk
attached to those mechanisms.

The different experimental results (see [4] for details)
clearly demonstrate that the operating system saves the
RAM content very frequently (wholly or partly) into
dedicated fi les, thus causing critical data to survive far
longer than expected, even after the computer has been
rebooted. All of those mechanisms, besides the RAM
remanence effect, constitute a critical risk against data
confi dentiality.

MALWARE-BASED ATTACKS AGAINST
CONFIDENTIALITY
Let us fi rst consider how a dedicated piece of malware
could exploit the RAM persistence in a computer. In other
words, we consider the different actions that a piece of
malware could take to steal critical data with respect to
memory persistence. We will present only a few of the most
illustrative examples included in [4]. We will consider a
piece of malware that is undetected by anti-virus products
as a general framework.

Eavesdropping
confi dential data

In this case, the malware will
look for sensitive data that survive
either in memory (remanence) or
in memory dump fi les. It is worth
mentioning that the malware
itself may induce the creation of
such fi les.

• Let us suppose that a secret
(inert or not) fi le is processed
(scanned by an anti-virus
engine or processed by a
dedicated application) on a
computer that is infected with

a piece of malware. A %SystemRoot%\MEMORY.DMP
fi le is created. In most cases, this fi le will contain at least
a signifi cant part of the secret data. In some cases, it is
possible to steal plain-text data during the decryption of
an encrypted document.

• A piece of malware can explore the computer’s RAM
content directly in order to fi nd secret data. Even after
a few hours, in some cases, the information remains
in memory. As an example, we plugged in a USB key
containing a secret fi le and then unplugged it. It was still
possible after the USB key had been removed to fi nd a
lot of data with respect to the fi le (the experiment can be
reproduced by using the WinHex software which embeds
a forensics function called ‘RAM editing’).

• Secret data is also saved by Windows XP in the
hibernation fi le HIBERFIL.SYS. Any piece of malware
could very easily access this fi le and retrieve a lot of
data that is contained in RAM when the computer
goes into sleep mode. If sleep mode is not activated by
default, the malware is able to activate it.

There are also many more ways for malware to collect
sensitive data – even when it is protected by encryption – by
exploiting the data persistence.

Theft of password or encryption keys
Now let us see how a piece of malware could collect critical
data with respect to the security of the computer itself:
password and encryption keys.

Analysis of the Windows swap fi le (PAGEFILE.SYS) or of
the hibernation fi le may reveal such critical data, as well as
it appearing in the %SystemRoot%\MEMORY.DMP fi le.
As an example, let us consider the PAGEFILE.SYS fi le. The

Figure 1: Session login password inside a PAGEFILE.SYS fi le.

Data persistence mechanisms Security risk
RAM remanence 1
Swap fi le 3 – 4
Hibernation fi le 2
Memory dump fi le 3 – 4

Table 1: Security risk with respect to data persistence

(lowest = 0 highest = 4).

VIRUS BULLETIN www.virusbtn.com

8 JULY 2008

session password can survive totally or partially in that fi le,
even after a reboot. The most interesting thing is that we
can recover the passwords of different users (in multi-user
mode). Figure 1 shows the presence of a session login
password inside the PAGEFILE.SYS fi le (nine characters
out of a total of 11 are recovered).

As for encryption keys, the data persistence (including
data remanence) will depend partly on the security
enforced at the application level. Tests have been
conducted on different pieces of encryption software. For
some of them, it is possible to retrieve wholly or partly
the password used to protect private keys in public key
encryption applications, and even the private key itself
can be retrieved either in the HIBERFIL.SYS fi le or in
the MEMORY.DMP fi le. In some cases, the private key
may also be present inside the PAGEFILE.SYS fi le.
Figure 2 shows the presence of the encryption password
inside a Windows hibernation fi le after decryption with
the open-source Cryptonit [5] software. (The same applies
with various other encryption software packages.)

It is therefore essential to keep in mind that the security
provided by the operating systems (some of the same
results have been obtained under Linux) and/or the security
software (e.g. encryption application) is not watertight and
critical data such as passwords and encryption keys may
be leaked. Even if such data is only partly recovered by a
malicious attacker (most of the time the recovery rate is
higher than 80%) it will be easy to guess the remaining
part (e.g. using a reduced brute force approach).

The other essential point lies in the fact that most of the
system fi les we have considered (swap fi le, hibernation fi le,

memory dump fi le) can be created by any malware itself. It
only has to manipulate the appropriate system confi guration
fi les and access the appropriate system description tables
(e.g. ACPI tables).

NEW MALWARE CONCEPTS EXPLOITING
MEMORY PERSISTENCE
In this section we will explain how data persistence
can be exploited by a piece of malware to replicate
(self-reproducing codes) or just to operate (installation of
simple malware such as trojans, logic bombs etc.). The
payload will not be taken into account here. We will present
a very simple, yet powerful proof of concept.

Before revealing the general mechanisms operated by
our proof of concept, it is essential to make one very
important point clear. For the attacker, the main problems
with data persistence (especially the remanence part)
lie in the fact that the data can only partly be recovered
and in the fact that he does not know a priori what that
data is. For example, in the case of obtaining a secret
key, the exact location of the key and the amount of
remaining information that needs to be guessed following
data recovery may make the attack more complex than
expected [3]. Moreover, the attacker cannot initially
operate on the data that is supposed to be persistent in
memory (using error correcting techniques for example).

But in the context of a piece of malware that is going to
exploit data persistence to operate, the initial preparation
of data used for that purpose is possible. In other words,
the malware will always know what it is looking for and

where to fi nd it. We just have to
use error correcting techniques
to prevent data loss due to the
natural and random limitation of
data persistence (including data
remanence).

The general design of the proof
of concept combines the data
persistence effects with the most
sophisticated malware techniques
that have recently been identifi ed:

• K-ary codes [7, 9]. Instead of
having a single fi le containing
all the malicious information,
k-ary malware are composed of
k different fi les, each of which
looks innocuous. A suitable
combination – either serially or
in parallel – of (at least) a subset
of those k parts results Figure 2: Cryptonit encryption password in a HIBERFIL.SYS fi le.

VIRUS BULLETIN www.virusbtn.com

9JULY 2008

 in the malware operation. In [9], it was shown that
detecting k-ary malware is an intractable problem.
One very interesting approach for malware is both to
split the malicious information and to introduce a time
delay between them. In this respect, data persistence
can provide a very powerful set of techniques to realize
such codes. A signifi cant subset of those k parts can
simply be persistent data either in memory (remanence)
or in some system fi les.

• Strongly armoured codes [6–8]. Such malware is
encrypted with strong algorithms (e.g. AES, RC6,
and Serpent), but unlike most encrypted malware the
secret key is not stored inside the code. In this setting,
the key is only available as a quantity taken from
the environment and is basically under the attacker’s
control. In our context, this key may be taken from data
that is known to be persistent in the computer at a given
time or after a given event, under the attacker’s control.

• Cryptography-based obfuscation techniques [7, 10].
This approach is quite similar to the previous one,
however in this case it is not the key which is the
information taken from data known to be persistent in
the computer at a given time/after a given event, but the
obfuscation algorithms themselves.

All these techniques have been tested and have proven
to be very effi cient. This shows that data persistence
represents extraordinary potential for developing existing
malicious techniques further, in a very sophisticated way.

PREVENTION
The essential question is: how can we prevent or limit the
exploitation of data persistence by malware, since detecting
such sophisticated code is bound to be a very complex
challenge.

The following methods should greatly contribute to
preventing such attacks:

• Anti-virus software should scan the entire memory
systematically and not only the memory actually
used. Critical system fi les (hibernation fi le, swap fi le
or area, memory dump fi le) should also be checked
systematically.

• Critical confi guration fi les managing the creation
of those fi les should also be protected by a suitable
security policy. Anti-virus software should warn against
any unsuitable confi guration for those fi les with respect
to data persistence.

• Critical software (for example encryption software)
should be implemented securely. Before terminating,
the physical memory that has been used should be

erased securely in order to prevent data remanence.
Critical data (such as cryptographic keys) should be
locked into memory in order to prevent information
becoming available via the swap fi le or error fi le (e.g.
CORE fi le under Linux). Most high-level programming
languages contain suitable primitives that can be used
to achieve this.

REFERENCES

[1] Gutmann, P. (1996). Secure deletion of data from
magnetic and solid-state memory. Proceedings of the
6th USENIX Security Symposium, pp.77–90.

[2] Gutmann, P. (2001). Data remanence in
semiconductor devices. Proceedings of the 10th
USENIX Security Symposium, pp.39–54.

[3] Halderman, J.A.; Schoen, S.D.; Heninger, N.;
Clarkson, W.; Paul, W.; Calandrino, J.A.; Feldman,
A.J.; Appelbaum, J.; Felten, E.W. (2008). Lest we
remember: cold boot attacks on encryption keys.
Available at http://citp.princeton.edu/memory.

[4] Filiol, E.; Tuccelli, C.; Vuong, T. (2008). Analyse
de la mémoire RAM. Récupération de données par
le phénomène de rémanence (RAM analysis: data
forensics through data persistence). Technical Report
ESAT 2008_M2.

[5] http://sourceforge.net/projects/cryptonit/.

[6] Filiol, E. (2004). Strong cryptography armoured
computer viruses forbidding code analysis: the
BRADLEY virus. Proceedings of the 2005 EICAR
Conference. Available at http://vx.netlux.org/lib/
aef02.html.

[7] Filiol, E. (2006). Techniques virales avancées.
Springer, Collection IRIS, ISBN 978-2-287-33887-8.
(An English translation entitled Advanced malware
techniques is pending end 2008.)

[8] Riordan, J.; Schneier, B. Environmental key
generation towards clueless agents. Lecture Notes In
Computer Science, Vol. 1419. http://portal.acm.org/
citation.cfm?coll=GUIDE&dl=GUIDE&id=746194.

[9] Filiol, E (2007). Formalisation and implementation
aspects of K-ary (malicious) codes. EICAR 2007
Special Issue, Broucek V.; Turner, P. eds. Journal in
Computer Virology, 3 (2), pp.75–86.

[10] Beaucamps, P., Filiol, E. (2006). On the possibility
of practically obfuscating programs. Towards a
unifi ed perspective of code protection. Journal in
Computer Virology, 2 (4), WTCV’06 Special Issue.
Bonfante G.; Marion J.-Y. eds.

http://citp.princeton.edu/memory
http://sourceforge.net/projects/cryptonit/
http://vx.netlux.org/lib/aef02.html
http://portal.acm.org/citation.cfm?coll=GUIDE&dl=GUIDE&id=746194

VIRUS BULLETIN www.virusbtn.com

10 JULY 2008

REVERSING PYTHON MODULES
Aleksander Czarnowski
AVET INS, Poland

The object-oriented programming language Python can be
used for many kinds of software development – potentially
including malware development. Aleksander Czarnowski
believes in being prepared and here he provides a brief
overview of how to reverse engineer a Python module.

One might ask: why is there any need to reverse engineer
Python scripts? After all, aren’t scripts just text fi les being
parsed by an interpreter? In fact, if the parsing process
succeeds, Python creates .pyc fi les from source fi les. These
are in the form of bytecode, which is far from original source.

NOT ONLY BYTECODE
The example presented above is one of four possible
situations in which it might be necessary to reverse engineer
Python scripts. The other three are: the use of .pyd fi les;
embedding the Python interpreter into a native application
written in C/C++; and the use of freeze alike capabilities.
I will focus my discussion on .pyc fi les, but the following
paragraphs provide a brief description of each of the other
cases:

Essentially, .pyd fi les are the same as Windows DLLs (with
a different extension). These fi les can be imported into
a module just like other Python modules (every script is
treated as a module in Python). If a fi le is named
‘foo.pyd’ it must contain the ‘initfoo()’ function. The
command ‘import foo’ will then cause Python to search for
foo.pyd and attempt to call initfoo() to initialize it.

The Python interpreter may be embedded into a native
application for a number of different reasons including as
a method of code obfuscation. It would be very easy (in
theory at least) to embed Python into a C/C++ application.
The simplest method is as follows (for more information
see [1]):
#include <Python.h>

void runpy(void) {

 Py_Initialize();

 PyRun_SimpleString(“print ‘hello world from
embedded Python.’”);

 Py_Finalize();

}

There are several tools that allow a programmer to turn
Python scripts into single EXE fi les. Two popular tools
in use today are cx_freeze [2] and py2exe [3]. Internally,
these are normal EXE fi les with an import table – however,
keep in mind that this will not tell you much about Python
imports or Python code.

I have spent many years using the powerful reverse-
engineering tool IDA Pro, extending its capabilities with
the help of plugins, IDC scripts and Python. I was shocked,
therefore, when I attempted to open a .pyc fi le for analysis,
and found that IDA did not support the target. With my most
powerful tool out of the picture, I had to resort to alternative
reverse-engineering methods.

THE PYC FILE STRUCTURE
It turns out that the PYC fi le structure is quite simple:

Size
(bytes)

Meaning

Magic
number

4

The fi rst two bytes of this number
tell us which version of Python
has been used to compile the
fi le. The second two are 0D0Ah,
which are a carriage return and
a line feed so that if the fi le is
processed as text it will change
and the magic number will be
corrupted. (This prevents the
fi le from executing after a copy
corruption.)

Modifi cation
timestamp

4

This is the Unix modifi cation
timestamp of the source fi le that
generated the .pyc so that it can be
recompiled if the source changes.

Code object > 1
This is a marshalled code object
which is a Python internal type
and is represented as bytecode [4].

More details, such as all the possible magic number values,
are included in [5], while [6] and [7] should help explain all
the internals.

The .pyc fi le header can be created by the
Module.getPycHeader method:
def getPycHeader(self):

 # compile.c uses marshal to write a long directly,
 # with calling the interface that would also
 # generate a 1-byte code to indicate the type of the
 # value. simplest way to get the same effect is
 # to call marshal and then skip the code.

 mtime = os.path.getmtime(self.fi lename)

 mtime = struct.pack(‘<i’, mtime)

 return self.MAGIC + mtime

The MAGIC variable is defi ned as:
MAGIC = imp.get_magic(). So to determine your Python
interpreter magic number you need to enter the following
commands:
>>> import imp

>>> imp.get_magic()

‘\xb3\xf2\r\n’

FEATURE 2

VIRUS BULLETIN www.virusbtn.com

11JULY 2008

GETTING TO THE MODULE
The beauty of Python is that you can import any module you
like as long as it compiles properly. This is not an issue for
.pyc fi les unless the fi le has been corrupted on disk.

Let’s assume our target is called ‘sample.pyc’. The
following is a sample session from Python interactive mode:
ActivePython 2.5.0.0 (ActiveState Software Inc.)
based on Python 2.5 (r25:51908, Mar 9 2007,
17:40:28) [MSC v.1310 32 bit (Intel)] on win 32

Type “help”, “copyright”, “credits” or “license” for
more information.

>>> dir() #inspect our namespace

[‘__builtins__’, ‘__doc__’, ‘__name__’]

>>> import dis #import Python disassembler –
batteries are really included

>>> import sample #import our pyc.fi le

>>> dir() #inspect our namespace once again

[‘__builtins__’, ‘__doc__’, ‘__name__’, ‘dis’,
‘sample’]

>>> dir(sample) #inspect our target namespace

[‘__builtins__’, ‘__doc__’, ‘__fi le__’, ‘__name__’,
‘foo’, ‘string’]

After inspecting the sample.pyc namespace we see there
is only one function called ‘foo’. To confi rm that this is a
function we can use the following code:
>>> getattr(sample, ‘foo’)

<function foo at 0x00AE1E70>

Now we can use the dis.dis() method to obtain the bytecode
of the foo function inside the sample.pyc module (Figure 1).

There is another object in the namespace of our target
– ‘string’. Let’s inspect it, using getattr:
>>> getattr(sample,’string’)

<module ‘string’ from ‘c:\Program Files\Python25\lib\
string.pyc’>

We can see that this is another module that has been
imported by our target. Looking at its path we can see it is
a standard string module from the Python distribution – but
how has this module been imported? We have never run
any of the sample.pyc code and a quick inspection of the
sample.foo() bytecode reveals no imports. First let’s have

a look at how the Python code ‘import string’ is translated
into bytecode:

Figure 2 shows that there is no defi nitive import in our
disassembly of sample.foo(). How could this happen?
The answer is simple – importing modules means the
execution of Python instructions that are not enclosed in
classes or functions. So in the case of malware using the
import function, this might not be the right solution for
disassembling the bytecode. However, we can use the
interpreter itself to perform the disassembly. This time we
will read the .pyc fi le by hand and use the marshal module.
The marshal module allows bytecode to be loaded from
fi le. As it expects the input to be bytecode, we need to skip
the fi rst eight bytes of the .pyc fi le (the magic number and
modtime stamp), as shown in Figure 3.

Now we can see our ‘import string’ instruction in bytecode
as well as the creation of the foo() function.

__IMPORT__() AND IMP
Python also allows the importing process to be hooked.
Internally, the import instruction calls the __import__()
function, which is responsible for all the internal magic that
happens during module imports. Also, the imp module can
be used for fi nding and loading modules (imp.fi nd_module
and imp.load_module, respectively). This could prove to be
helpful during dynamic analysis.

DYNAMIC ANALYSIS
Python comes with a built-in debugger: pdb. Pdb is a
module so it is quite simple to use:
>>> import pdb

>>> import module_name

>>> pdb.run(‘module_name.function_name()’)Figure 1: Getting the bytecode of the foo function.

Figure 2: There is no defi nitive import.

Figure 3: Using the marshal module.

VIRUS BULLETIN www.virusbtn.com

12 JULY 2008

Internally, pdb uses sys.settrace to achieve its magic. Like
most debuggers, pdb is better suited to cases in which we
have access to source code. In fact, when the source code
is missing it is quicker to run the script in a controlled
environment and trace the system function calls at OS level
than to work with pdb. On Win32 systems a set of trusty
SysInternals tools comes in handy. For larger tasks writing
a dedicated sys.settrace handler function would be a
possible solution.

REWRITING BYTECODE
Rewriting bytecode is also possible. Byteplay [8] is an
interesting project which allows the user to manipulate
Python code. The module works with Python versions 2.4
and 2.5. There are also a number of other utilities with
similar functionality. Rewriting bytecode could prove useful,
for example, in the case of patching .pyc fi les on the fl y.

SUMMARY
The aim of presenting the methods described here was not
to provide a defi nitive reverse-engineering solution but to
provide the reader with enough information to fi nd their
own path. Python often allows even complex problems to be
solved with its built-in functionality. Many of the operations
presented here could have been achieved in a simpler
manner or using other tools.

I have seen very little information published about Python
bytecode. As Python is commonly installed on many
Unix/Linux systems and is also embedded into several
games engines, the ability to understand its bytecode is
important as there can be little doubt that it will be targeted
by attackers in the future.

REFERENCES
[1] Embedding Python in another application.

http://www.python.org/doc/ext/embedding.html.

[2] http://python.net/crew/atuining/cx_Freeze/.

[3] http://www.py2exe.org/.

[4] Internal types: code objects
http://docs.python.org/ref/types.html#l2h-143.

[5] http://svn.python.org/view/python/trunk/Python/
import.c?view=markup.

[6] http://docs.python.org/lib/compiler.html.

[7] http://svn.python.org/view/python/trunk/Lib/
compiler/pycodegen.py?rev=61585&view=markup.

[8] http://code.google.com/p/byteplay/.

VB2008 OTTAWA
1–3 OCTOBER 2008

Join the VB team in Ottawa, Canada for the
anti-virus event of the year.

What: • Three full days of presentations
 by world-leading experts

 • Automated analysis

 • Rootkits

 • Spam & botnet tracking

 • Sample sharing

 • Anti-malware testing

 • Corporate policy

 • Business risk

 • Last-minute technical
 presentations

 • Networking opportunities

 • Full programme at
 www.virusbtn.com

Where: The Westin Ottawa, Canada

When: 1–3 October 2008

Price: Special VB subscriber price $1795

BOOK ONLINE AT
WWW.VIRUSBTN.COM

http://www.virusbtn.com/conference/vb2008/index
http://www.python.org/doc/ext/embedding.html
http://python.net/crew/atuining/cx_Freeze/
http://www.py2exe.org/
http://docs.python.org/ref/types.html#l2h-143
http://svn.python.org/view/python/trunk/Python/import.c?view=markup
http://docs.python.org/lib/compiler.html
http://svn.python.org/view/python/trunk/Lib/compiler/pycodegen.py?rev=61585&view=markup
http://code.google.com/p/byteplay/

VIRUS BULLETIN www.virusbtn.com

13JULY 2008

ADVERTISING DATABASE
POISONING
Lysa Myers
McAfee, USA

Adware programs have variously been dressed up as
providing anti-phishing protection, intrusion detection
capabilities as well as the ‘benefi t’ of targeted advertising,
but their presence is still a considerable nuisance to many.
Here, Lysa Myers looks into the dubious world of Internet
advertising and looks at the effects of programs such as
AntiPhorm on adware in general.

Advertising has become an integral part of everyday
life – it is almost completely unavoidable. Movies and
TV shows have even depicted a fantasy future world
in which advertisements appear in our dreams, and on
‘smart billboards’ which track our every move. Recent
developments in targeted advertising have brought the latter
scenario increasingly close to a present-day possibility [1],
but there are many who fi nd this a completely nightmarish
prospect.

In order to obtain this sort of targeted information,
advertisers are looking to dig ever deeper into our lives.
This naturally raises privacy concerns for those who would
prefer not to allow such personal information to get into the
hands of complete strangers.

Advertising on the Internet has been a technological testing
ground for new information-gathering techniques, and for
pushing the boundaries of what is considered acceptable
information-gathering behaviour. Almost every sort of
network traffi c has been used to send advertising content,
and now more and more traffi c is being monitored in order
to tailor such content.

What if there was an effective way to dissuade advertisers
from using such invasive techniques? The rise of
anti-spyware programs that detect invasive adware as
‘potentially unwanted programs’ (PUPs) has arguably had
some effect on the declining prevalence of advertising
software placed on users’ computers (see Figure 1). But
what can be done when the invasion is being generated from
somewhere other than the users’ machines?

THE GENESIS OF INTERNET ADVERTISING
The Internet originally started as a place for people to share
information and services freely. In order to fund the time
and resources needed to maintain a popular website, people
needed to come up with ways to make money from the
services/information they were providing. Some made their
sites subscription-based, charging a fee for their services.

Most of the rest turned to advertising revenue as a source of
income.

As more sites have turned to using advertising to fund
themselves, many are looking to maximize profi tability for
the advertisers and increase the relevance of advertisements
to the user. Demographic information, web-search and
email content, as well as Internet surfi ng habits have all
been used to customize advertising content. Demographic
information is generally gathered by compulsory
registration, whereas surfi ng habits and email/web-search
content is typically gathered without any user interaction.

Many users are offended by what they perceive to be an
invasion of their privacy, being obliged to provide personal
(even if not personally identifi able) information to an
advertiser. Some of these people tried to decrease the
incentive for advertisers to gather information this way by
providing them with fake information.

BUGMENOT
BugMeNot was a weekend project that was started in
August 2003 by an Australian named Guy King [2]. At
that point one of the more popular ways for websites to
obtain targeted demographic information for advertisers
was to require visitors to complete a free registration before
allowing them to access content on their sites. This way
they could get information about a user’s zip code, salary
range, gender, date of birth or specifi c interests, and then
sell that information to advertisers.

King created a massive database of information with
which to complete the registrations for sites that used this
technique, asking the users of BugMeNot to help populate
this database. A number of rules were put in place to keep
people from using it for fraud, or other malicious activities.

Part of the success of BugMeNot could be attributed to
the developer’s decision to make the database accessible
via a plugin for Firefox – the timing was such that

Figure 1: Adware classifi ed per quarter.

FEATURE 3

VIRUS BULLETIN www.virusbtn.com

14 JULY 2008

Firefox was just becoming popular, and many technology
and productivity blogs cited the BugMeNot plugin as
a compelling reason to switch from Internet Explorer.
Coupling the open-source spirit of the BugMeNot database
with the Firefox browser was a natural match.

In the years since BugMeNot became popular, many websites
have abandoned compulsory registration. By poisoning the
websites’ user databases with bogus details on such a wide
scale, the information that sites gathered was rendered useless
for the purposes of selling to advertisers. The information
could not be considered suffi ciently trustworthy to ensure
advertisers were targeting ads to the right demographic.

BugMeNot was a simple solution for a simple problem, and
its story is relatively straightforward. The next generation of
data-mining for advertising would be far more intrusive and
complex, and its story full of twists and turns.

GOOGLE AND CONTENT MONITORING
In 2000, some years before compulsory registration
reached its highest point, Google began selling ads based
on search keywords. As these were text-based and visually
unobtrusive, the ads were generally considered less
offensive than the banner ads which were most common
at the time. The privacy concerns were few, because
search terms were not considered personally identifi able
information and because the data that was captured was not
intended to leave Google.

For those who objected to these keyword ads, two Firefox
plugins were created, TrackMeNot and SquiggleSR. These
were both designed to create fake searches, to lose the
genuine keyword content amongst a fl ood of automatically
generated searches. The traffi c from these applications has
never been suffi cient to motivate any behaviour changes on
the part of the search engines.

In April 2004 Google introduced Gmail, a free web-mail
service which boasted 100 times the storage capacity of
its leading competitors at the time. To support this service,
Google included advertising alongside each email viewed,
in a form similar to that of the text-based ads that were used
in the company’s search service. The ads were generated by
parsing the content of the email, to ensure relevant content.

This was considered by many to be a serious violation
of privacy, as email is ostensibly a private conversation
between the sender and the intended recipient(s). Since
there were many competitors in the web-mail market,
people who found this practice unacceptable generally
simply chose an alternative provider.

In the end, Gmail was considered a resounding success, and
the advertising was viewed by the majority of its users as

an acceptable cost for this free service. This success seemed
to embolden other advertisers, who saw that users would
accept their content being fi ltered to allow more relevant
ad content. However, there were two lessons that these
advertisers didn’t seem to learn from the success of Gmail
or the failure of compulsory registration. One was that in
order for this to be acceptable, the user had to be given
something of signifi cant monetary value. The other was
that allowing your advertising database to be accessed by
outside parties was considered a greater privacy violation.

DEEP PACKET INSPECTION
In July 2007 British Telecom (BT) began a test with a
company called Phorm who used deep packet inspection
at the ISP level to gather information on the web-surfi ng
habits of its subscribers and subsequently deliver tailored
advertising content. Phorm has claimed that it scrubs the
content it stores of any personally identifi able information,
and that it can also act as an anti-phishing measure as it
keeps a list of known phishing sites to prevent users from
accessing them.

However, the test was performed in secret, without the
knowledge or consent of BT’s user-base. It wasn’t even
widely known that the testing had occurred until the
beginning of 2008. This did not set the experiment off on a
good note. If this was something that would benefi t the user,
would the company not have advertised this fact?

Phorm had previously been known by another name
(121media). In its previous incarnation the company had
been associated with an adware application called Apropos,
which used some of the most devious and sneaky tactics of
any such program. The company closed its doors in 2006.

At about the same time as Phorm came on the scene, a
number of other similar entities began to partner with other
ISPs to perform similar data-mining activities. The most
well known of these are NebuAd, Front Porch, Adzilla and
Project Rialto.

The most similar to Phorm is NebuAd, which has partnered
with a number of US-based ISPs, most notably Charter
Communications. Adzilla, like NebuAd and Phorm, also
confi nes itself strictly to the collection of ‘anonymous’
web-surfi ng traffi c. It also sells its database to outside
parties, in order to serve targeted ad content. Unlike NebuAd
and Phorm, there is little mention anywhere of which ISPs
Adzilla is partnered with.

Front Porch promotes itself in a signifi cantly different
tone. Whereas Phorm, NebuAd and Adzilla all stress the
importance of increasing the relevance of ads, Front Porch
fl aunts the ability it gives ISPs to modify their users’ Internet
experience. It gives the following list of popular uses:

VIRUS BULLETIN www.virusbtn.com

15JULY 2008

• Redirect subscribers to your portal or a partner’s site,
regardless of their browser home page settings.

• Offer limited web access to specifi ed subscribers,
enabling full access once your conditions are met.

• Redirect subscribers to a partner search engine when
they conduct online searches.

• Create a ‘walled-garden’ of allowed sites for specifi c
subscribers.

Project Rialto has also taken a rather different approach.
It is now known as Kindsight, and its stated purpose is
to provide intrusion detection with its traffi c monitoring.
The company states that this service is ‘funded through an
advertising mechanism’, providing the users with ‘ads on
sites that are of interest to the subscriber base’.

THE FIGHT AGAINST DATA MINING
Since the deep packet inspection of companies like Phorm
was coming from the ISP, and in many areas there are
few, if any, competitors for broadband access, a software
solution was sought. AntiPhorm is a stand-alone program
which generates fake web-surfi ng traffi c, intended to
bury a user’s genuine web-surfi ng behaviour in a fl ood
of automatically generated traffi c. While it was created
specifi cally to work against Phorm, it also works with other
surfi ng-trackers and adware applications.

Web surfi ng is a rather risky business today, with malware
infecting legitimate sites as well as more seedy ones. The
AntiPhorm developers were conscious of this and have
taken a variety of steps to minimize any risk to the user
caused by additional surfi ng.

In hidden and text-only modes AntiPhorm pre-fi lters the
content it receives to exclude JavaScript, images, video
and Flash. It doesn’t execute HTML code directly in the
browser when in console or hidden mode. Lists of keywords
and URLs are both completely customizable, so a user can
further restrict what traffi c is allowed.

CONCLUSION
The purpose of AntiPhorm is to create extraneous and
erroneous entries in the advertisers’ database, reasonably
safely. It seems well suited to this purpose. But will it be as
effective as BugMeNot in curbing the greater adware trend?
While AntiPhorm doesn’t currently have the benefi t of
riding the rising popularity of an Internet browser, there are
a few outside factors which could work in its favour.

The fi rst is the growing awareness that even information
which does not appear to be personally identifi able can
be, when taken in context. When a text fi le containing

search keywords from AOL was accidentally released on
the Internet, it quickly became apparent that information
from searching could easily be used to identify the searcher
[3]. By ego-surfi ng, entering addresses or social security
numbers, a user’s search could easily be mapped to their
‘anonymous’ numeric ID.

There is also a growing sentiment that the BT/Phorm tests
were illegal, and that the only legally acceptable option is
for Phorm to be used as an opt-in service rather than opt-out
as it is currently set up by most ISPs [4]. This sentiment
has been detrimental to Phorm in signing up new partners
– both MySpace and The Guardian declined to partner with
the company in light of the negative public sentiment [5].

While adware applications have been on the decline
recently, their presence is still a considerable nuisance to
many. As AntiPhorm is a free utility, it may gain popularity
with a wider audience who seek to thwart adware thrust
upon them by certain freeware vendors [6].

On the other hand, there is one thing that may severely
hinder the effectiveness of AntiPhorm. Where compulsory
registration was used on some of the most popular websites
on the Internet, deep packet inspection is used by only a
small handful of ISPs at the time of writing. As negative
publicity increases for this sort of monitoring, more ISPs
are making it opt-in rather than opt-out. It’s unlikely to
continue to increase in popularity, and it may not ever rise
to be the level of nuisance posed by adware.

In effect, the biggest threat to the usefulness of AntiPhorm’s
advertising database poisoning may simply be that Phorm
may never gain suffi cient popularity. Phorm may collapse
under the weight of its own bad PR. Perhaps AntiPhorm
would be best advised to re-brand to appeal to a wider
audience of Internet users who are tired of all content
monitoring, regardless of the commercial entity behind it.

REFERENCES
[1] http://www.cinematical.com/2007/01/31/minority-

reports-intelligent-ads-are-now-science-fact/.

[2] http://www.theage.com.au/news/web/revealed-the-
brains-behind-bugmenot/2007/10/08/1191695798003.
html?s_cid=rss_technology.

[3] http://en.wikipedia.org/wiki/AOL_search_data_
scandal.

[4] http://www.theregister.co.uk/2008/03/17/phorm_fi pr_
illegal/.

[5] http://www.theregister.co.uk/2008/03/26/guardian_
phorm_uturn/.

[6] http://www.geek.com/antiphorm-lite-offers-
intelligent-surfi ng-anonymity/.

http://www.cinematical.com/2007/01/31/minority-reports-intelligent-ads-are-now-science-fact/
http://www.theage.com.au/news/web/revealed-the-brains-behind-bugmenot/2007/10/08/1191695798003.html?s_cid=rss_technology
http://en.wikipedia.org/wiki/AOL_search_data_scandal
http://www.theregister.co.uk/2008/03/17/phorm_fipr_illegal/
http://www.theregister.co.uk/2008/03/26/guardian_phorm_uturn/
http://www.geek.com/antiphorm-lite-offers-intelligent-surfing-anonymity

VIRUS BULLETIN www.virusbtn.com

16 JULY 2008

SUNBELT SOFTWARE VIPRE
ANTIVIRUS + ANTISPYWARE
John Hawes

This month’s review product is something quite exciting
– a genuinely new anti-malware product emerging from the
anti-spyware boom.

Many years ago, anti-virus developers opted to ignore
malicious trojan programs, considering them to be outside
their remit, and only later did they come to conclude that
protection from such threats was a vital part of security.
With spyware ignored by many established products,
specialist anti-spyware products sprang up to fi ll the gap.
When the wheel turned once again and spyware came to
be understood as just another facet of the malware fi eld,
most of the leading players in the anti-virus market added
anti-spyware functionality to their products. Similarly,
players in the anti-spyware market adapted by either buying
in or licensing anti-virus technology to complement their
own.

Sunbelt Software, meanwhile, whose CounterSpy product
remains one of the undoubted leaders in the anti-spyware
arena, took the more arduous path of developing its own
scanning engine to cover the wider range of malicious code.
The long-awaited VIPRE (Virus Intrusion Prevention and
Recognition Engine) is the fruit of the company’s labours.
Currently still in beta, with full release delayed somewhat
longer than expected, the product has built up considerable
expectations and I was excited to be able to take an early
look at its capabilities.

WEB PRESENCE, INFORMATION AND
SUPPORT
Sunbelt’s online presence, and much of its brand
recognition within the security industry, owes a lot to the
company’s renowned blog – which has become a regular
recommendation in ‘top 100 blogs’ lists including those
maintained by PC World and CNET News.com. The
blog (at http://sunbeltblog.blogspot.com/) is run almost
single-handedly by the fi rm’s energetic CEO Alex Eckelberry,
who keeps up a startlingly regular stream of updates on the
latest developments in security, covering new scams and
malware techniques, industry and market events, security-
related news items (the blog was a pivotal campaign ground
in the infamous Julie Amero case), with the occasional
off-topic digression into humour and skateboarding pics.

The fi rm’s offi cial website, www.sunbelt-software.com, is
a slightly more sober place, but still bright and cheerful and
adorned with the hot orange of the company’s logo. The

site’s front pages
are dedicated
mostly to
promoting the
company’s
product range,
which as well as
various versions
of CounterSpy
includes a
highly respected
personal fi rewall
(known as
Kerio prior to
its acquisition
by Sunbelt),

anti-spam and general email security products for home and
enterprise users, and a selection of backup, compliance and
vulnerability management tools.

Further into the site there is a research subsite offering a
range of information and resources, including details of
the latest threats, outbreak alerts and a threat database. The
database is dominated by spyware but also includes a range
of viruses, worms and other types of threat. Product updates
and white papers are also provided here, along with access
to another product, the CWSandbox malware analysis tool.
This can be used as an online resource, quickly processing
submitted fi les and providing detailed reports of their
behaviours, and is also available as a standalone product for
simple and effective analysis of suspect fi les.

A support section provides a variety of methods for getting
assistance, with the usual online form and generic email
address complemented by an all-too-rare telephone number.
A knowledgebase, which seems fairly well populated, is
also provided to solve common issues, and the site hosts an
impressive range of busy forums, discussing not only the
company’s own products but also a selection of other topics
of interest to systems and security admins. These services
are backed up by a series of news mini-sites providing top
stories and comment on various versions of Windows as
well as CounterSpy.

Documentation for the products was a little tricky to fi nd,
as I had assumed that the manuals etc. would be included
in the support section. However, I eventually turned up a
batch of user- and quick-start guides in the products section,
which I found were well designed and written in informal,
chatty language to minimise the fear factor. Instructions are
given based on tasks rather than controls, allowing for easy
mastering of important confi guration and management jobs.
A full user manual did not seem to be available, but this
was more than made up for by the excellent inline help I
discovered after installing, with the appropriate entry linked

PRODUCT REVIEW

http://sunbeltblog.blogspot.com/
http://www.sunbelt-software.com/

VIRUS BULLETIN www.virusbtn.com

17JULY 2008

to from just about every area of the product, providing clear
and simple guidance on the operation and use of the various
functions.

INSTALLATION AND CONFIGURATION
Having prodded around enough, I fi nally sat down to try out
the product itself. The installer package came in at a pretty
reasonable 23.5 MB; this compactness, I later discovered,
was helped by the product being provided with no detection
data at all to begin with, relying instead on an initial update
to get everything up to speed. The installation process began
along pretty standard lines, with the usual warnings to
ensure no other anti-virus software was running, a lengthy
EULA, and the selection of install destination before the
fi le-copying process got under way. This seemed reasonably
speedy on most systems, taking less than a minute on even
a few rather decrepit and underpowered ones. A reboot was
required to fi nalise things.

After the reboot, the completion of a series of setup tasks
was required, starting with providing details of any proxy
that might be in use before defi ning the update settings. An
initial update could be run manually from here, and options
were available for allowing the product to initiate a web
connection if required, and to pull down updates at will,
with a default timing of every two hours. Next came the
‘Active protection’ module, the real-time scanner (for which
a level of paranoia could be selected), and email scanning,
which could be set to monitor particular ports for SMTP
traffi c if required.

This was followed by the ‘ThreatNet’ settings, a herd
immunity scheme to which users can contribute suspect
fi les if desired, and then the scheduling of scans. This
seemed to lack a little granularity and could either be off
or running nightly at 1 a.m. – fi ner tuning of this setting
(to allow night hawks to carry on gaming uninterrupted
into the small hours) turned out to be available in the
interface proper. Then there were some options to integrate

with the Windows
Security Center,
and to disable
Windows Defender
if running, then
activation and
registration
options, and
fi nally everything
was good to go.
Keen users can
celebrate the end
of this rather
lengthy process by

viewing an online demonstration video, in which a smooth
voice guides the viewer through the basics of the product’s
layout.

I decided to explore the product for myself however, and
got my fi rst look at the interface itself. It presented a
pretty attractive face to the world, adorned with a snazzy
snake-on-a-shield logo. The front page is clean and clear,
with a list of the major components marked with the
standard green tick/red cross to indicate their status, and
some simple statistics in one corner. Each section has a link
to the appropriate controls page, and a row of tabs along
the top provides access to further functions. Even the most
inexperienced software user would have no trouble fi nding
their way around.

Most of the settings options lead to the appropriate tab
of a unifi ed confi guration window, where many of the
settings defi ned during the initial setup process can be
adjusted, along with some more in-depth controls for some
areas. Granularity in the controls for both on-demand and
on-access scanning is fairly reasonable; checking of certain
locations, fi le types and threat types can be switched on
or off and response to threats can be either automated or
interactive. The on-access scanner can be set to monitor
custom fi le types by extension and even includes a limited
intrusion prevention system, which can be set to monitor a
range of system areas for signs of unauthorised interference.
These monitors ‘allow all’ by default but can be set to
prompt for permission before allowing changes to things
like the hosts fi le, pivotal registry settings and Internet
Explorer settings.

The tabs along the top give access to a range of extra tools,
some management tasks including scheduling jobs, perusing
the quarantine and scan and detection histories (detailed
logging is available), and the lists of ‘always allowed’ and
‘always blocked’ items. The on-demand scanner has its own
tab, offering a quick mode and a ‘deep’ mode, as well as

VIRUS BULLETIN www.virusbtn.com

18 JULY 2008

a custom option, and of course can also be operated via a
right-click menu entry.

The full set of updates were downloaded fairly speedily
but expanded to an impressive 55 MB once installed. After
transferring these to my test systems I put the various
options to use running some scans over the VB sample
collections.

SYSTEM PROTECTION AND MALWARE
DETECTION
Some initial scans of our clean test sets provided an idea
of the scanning speed of the product, which was pretty
impressive across the board – perhaps not quite up with the
very fastest products measured over the same test sets in
recent VB100 comparatives, but some way ahead of most.
With the product getting its fi rst glimpse of these large and
diverse test sets – which have a habit of tripping up even the
most respected products on a regular basis – I expected to
see quite a large number of false alarms, but was surprised
to fi nd only a tiny number of fairly obscure items fl agged
as suspicious.

Moving on to the malware sets, scanning across the full
range of items produced fewer surprises. Detection rates
over the more recent sets of widespread worms and bots
were excellent, as was coverage of the collections of trojans
and spyware that are currently being compiled from recent
reports. File-infecting malware was always going to be
more diffi cult, and detection of some of the older samples
was understandably limited, but some of the macro sets
were handled impressively. Detection of polymorphic items,
including some of the W32/Virut strains riding high in our
prevalence reports in recent months, was somewhat patchy,
but this is something that Sunbelt is working to improve
as the product nears its fi nal release, collaborating with
certifi cation agencies to ensure more complete coverage.

Although the product was not quite ready for entry in the
latest VB100, it looks like a strong contender for achieving
certifi cation once it is fully released.

The on-access scanner showed similarly good scanning
speeds, refl ecting the low scanning overheads experienced
during some general playing around on a protected
system, and detection rates closely matched those of the
on-demand side. A heavy bombardment (attempting to
access tens of thousands of infected samples) did seem to
overwhelm the product somewhat, bringing up some
C++ runtime error messages and leaving the test system
pretty crippled, but such an extreme situation is unlikely
to be encountered in the real world, and once again
the issue should be smoothed out in the fi nal stages of
pre-release testing. Turning up the paranoia levels sparked
alerts on a wider range of items including the opener tool
used for the on-access test, whose behaviour of accessing
large numbers of fi les at once was rightly judged to be a
little suspicious.

This led me to try out some of the intrusion-prevention
monitors available in the advanced options of the ‘Active
protection’ module, which once activated were able to
spot and block many of the activities of a selection of new
and unknown threats, including changes to the hosts fi le,
installation as startup items, and other common steps in
setting up an infection. With all options enabled it pretty
much locked the system down, prompting for permission
for just about any unexpected execution or action. With the
product disabled a handful of other items were installed
and, once re-enabled, VIPRE showed impressive abilities in
the removal and cleanup of some tricky infections.

There was not enough time to carry out fully in-depth
testing of the product’s various capabilities against a wider
range of malware, but I hope to see it appearing in VB100
tests soon. I also hope to be able to review the product again
at around the time the suite version emerges, when I will be
able to give it a more thorough exercising.

OTHER FUNCTIONALITY
For the moment at least, VIPRE provides a bare bones
anti-malware system rather than a full suite; integration
with Sunbelt’s personal fi rewall is expected soon, along
with a corporate version of the product, and it seems likely
that some of the company’s anti-spam technology will
eventually be added too. ‘Bare bones’ is perhaps a little
misleading, as there is in fact considerably more on offer
than simple malware detection, blocking and removal.

The fi rst entry on the ‘Tools’ tab is a secure fi le eraser,
which as far the interface is concerned only provides the
chance to add an extra deletion option to the Windows

VIRUS BULLETIN www.virusbtn.com

19JULY 2008

Explorer context menu. This promises to shred fi les
securely, beyond the reach of even specialist recovery tools,
to ensure confi dential data cannot fall into the hands of even
the most determined thief. The exact method of deletion is
not disclosed, but for most purposes a few levels of random
overwriting are a pretty sure bet.

The history cleaner is a rather more complex tool, offering
to remove temporary cache fi les, cookies, browsing history
etc. from a pretty exhaustive range of browsers, media
players, chat programs and much more besides. These can
be confi gured to show only installed items, and also to leave
some products alone, but new products cannot be added
manually (presumably updates provided by the vendor can
add coverage for extra items and the latest versions of those
already included).

The third and last of the extra tools is ‘PC Explorer’, an
even more sophisticated gizmo providing access to a range
of low-level information, much of which is often concealed
from users in the normal course of things. Lists of running
processes, processes launched at startup, installed ActiveX

objects and Browser Helper Objects and the contents of
the hosts fi le, along with several other categories, can be
perused, marked as safe if recognised, and more detail
on most is available at the click of a button. In stark
contrast to the idiot-proof simplicity of the main parts of
the interface, this is seriously technical stuff that is likely
to be beyond the understanding of the average user, but
both fascinating and useful for the more computer-literate.
The lack of simple buttons to fi x unwanted items would
mean that any problems discovered using this tool would
require some technical knowledge in order to be corrected
manually.

CONCLUSIONS

Having had high expectations of this long-awaited
product, VIPRE did not disappoint. The design and layout
is splendidly clear and useable, the range of features easily
accessed and controlled. The protection capabilities are
impressive, and will doubtless be even more so once a
fi nal release is available. In the area of virus detection,
which is fairly new to the company, detection was rather
impressive (if not yet up to the same level as the spyware
handling), and this looks set to improve in leaps and
bounds as the company dedicates more of its time and
expertise to the problem.

There are several innovative items in this product, including
the limited but potent intrusion prevention options and
the string of useful and well-thought-out extra tools. The
innovation carries on beyond the technical side of the
product to include the availability of a ‘home site licence’,
allowing home users with multiple computers – which is
not uncommon these days – to protect all their systems for a
single price.

If the next stage of the product’s development – rolling in
the company’s full personal fi rewall technology to create a
full-blown catch-all suite product – can maintain the high
standards of design, solidity and usability seen here, it will
surely be a force to be reckoned with.

Technical details

Sunbelt VIPRE was variously tested on:

AMD K7, 500 MHz, 512 MB RAM, running Microsoft Windows
XP Professional SP2.

Intel Pentium 4 1.6 GHz, 512 MB RAM, running Microsoft
Windows XP Professional.

AMD Athlon64 3800+ dual core, 1 GB RAM, running Microsoft
Windows XP Professional SP2 and Windows Vista SP1 (32-bit).

AMD Duron 1 GHz laptop, 256 MB RAM, running Microsoft

Windows XP Professional SP2.

JULY 2008

VIRUS BULLETIN www.virusbtn.com

END NOTES & NEWS

20

ADVISORY BOARD
Pavel Baudis, Alwil Software, Czech Republic
Dr Sarah Gordon, Independent research scientist, USA
John Graham-Cumming, France
Shimon Gruper, Aladdin Knowledge Systems Ltd, Israel
Dmitry Gryaznov, McAfee, USA
Joe Hartmann, Microsoft, USA
Dr Jan Hruska, Sophos, UK
Jeannette Jarvis, Microsoft, USA
Jakub Kaminski, Microsoft, Australia
Eugene Kaspersky, Kaspersky Lab, Russia
Jimmy Kuo, Microsoft, USA
Anne Mitchell, Institute for Spam & Internet Public Policy, USA
Costin Raiu, Kaspersky Lab, Russia
Péter Ször, Symantec, USA
Roger Thompson, CA, USA
Joseph Wells, Lavasoft USA

SUBSCRIPTION RATES
Subscription price for 1 year (12 issues):

• Single user: $175

• Corporate (turnover < $10 million): $500

• Corporate (turnover < $100 million): $1,000

• Corporate (turnover > $100 million): $2,000

• Bona fi de charities and educational institutions: $175

• Public libraries and government organizations: $500
Corporate rates include a licence for intranet publication.

See http://www.virusbtn.com/virusbulletin/subscriptions/ for
subscription terms and conditions.

Editorial enquiries, subscription enquiries, orders and payments:
Virus Bulletin Ltd, The Pentagon, Abingdon Science Park, Abingdon,
Oxfordshire OX14 3YP, England
Tel: +44 (0)1235 555139 Fax: +44 (0)1235 531889
Email: editorial@virusbtn.com Web: http://www.virusbtn.com/
No responsibility is assumed by the Publisher for any injury and/or
damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any methods,
products, instructions or ideas contained in the material herein.
This publication has been registered with the Copyright Clearance
Centre Ltd. Consent is given for copying of articles for personal or
internal use, or for personal use of specifi c clients. The consent is
given on the condition that the copier pays through the Centre the
per-copy fee stated below.
VIRUS BULLETIN © 2008 Virus Bulletin Ltd,The Pentagon, Abingdon
Science Park, Abingdon, Oxfordshire OX14 3YP, England.
Tel: +44 (0)1235 555139. /2008/$0.00+2.50. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted in any
form without the prior written permission of the publishers.

The SecureAmsterdam conference on emerging threats takes
place 15 July 2008 in Amsterdam, the Netherlands. For details see
https://www.isc2.org/cgi-bin/events/information.cgi?event=66.

SANSFIRE 2008 takes place 22–31 July 2008 in Washington,
DC, USA. The course schedule for SANSFIRE 2008 features a full
line-up in the disciplines of audit, security, management and legal
as well as new courses with a focus on penetration testing, malware
analysis and removal, and secure coding. For more information see
http://www.sans.org/sansfi re08/.

The 17th USENIX Security Symposium will take place 28 July
to 1 August 2008 in San Jose, CA, USA. A two-day training
programme will be followed by a 2.5-day technical programme,
which will include refereed papers, invited talks, posters,
work-in-progress reports, panel discussions, and birds-of-a-feather
sessions. For details see http://www.usenix.org/events/sec08/cfp/.

Black Hat USA 2008 takes place 2–7 August 2008 in Las Vegas,
NV, USA. Featuring 40 hands-on training courses and 80 Briefi ngs
presentations. This year’s Briefi ngs tracks include many updated topics
alongside the old favourites including zero-day attacks/defences,
bots, application security, deep knowledge and turbo talks. Online
registration closes on 31 July. For details see http://www.blackhat.com/.

VB2008 will take place 1–3 October 2008 in Ottawa, Canada.
Presentations will cover subjects including: sample sharing,
anti-malware testing, automated analysis, rootkits, spam and botnet
tracking techniques, corporate policy, business risk and more.
Register online at http://www.virusbtn.com/conference/vb2008.

SecTor 2008 takes place 7–8 October 2008 in Toronto, Canada.
The conference is an annual IT security education event created by
the founders of North American IT security usergroup TASK. For
more information see http://sector.ca/.

The 3rd International Conference on Malicious and Unwanted
Software (Malware ’08) will be held 7–8 October 2008 in
Alexandria, VA, USA. The main focus for the conference will be
‘the scalability problem’. For more details see http://isiom.wssrl.org/.

Black Hat Japan 2008 takes place 7–10 October 2008 in Tokyo,
Japan. Training will take place 7–8 October, with the Black Hat
Briefi ngs taking place 9–10 October. For full details see
http://www.blackhat.com/.

Net Focus UK 2008 takes place 8–9 October 2008 in Brighton,
UK. The event deals with issues of security, personnel, compliance,
data privacy, business risk, e-commerce risk and more. For details see
https://www.baptie.com/events/show.asp?e=160&xyzzy=2.

The third APWG eCrime Researchers Summit will be held 15–16
October 2008 in Atlanta, GA, USA. eCrime ‘08 will bring together
academic researchers, security practitioners and law enforcement
representatives to discuss all aspects of electronic crime and ways to
combat it. See http://www.antiphishing.org/ecrimeresearch/.

The SecureLondon Workshop on Computer Forensics will be
held 21 October 2008 in London, UK. For further information see
https://www.isc2.org/cgi-bin/events/information.cgi?event=58.

RSA Europe 2008 will take place 27–29 October 2008 in London,
UK. This year the conference celebrates the infl uence of Alan
Mathison Turing, British cryptographer, mathematician, logician,
biologist and ‘the father of modern computer science’. For full details
including the conference agenda and online registration see
http://www.rsaconference.com/2008/Europe/.

CSI 2008 takes place 15–21 November 2008 in National Harbor,
MD, USA. Online registration will be available soon at
http://www.csiannual.com/.

AVAR 2008 will be held 10–12 December 2008 in New Delhi,
India. The 11th Association of anti-Virus Asia Researchers
International Conference will be hosted by Quick Heal Technologies
Pvt. A call for papers has been issued, with a submission deadline of
15 July. See http://www.aavar.org/avar2008/index.htm.

https://www.isc2.org/cgi-bin/events/information.cgi?event=66
http://www.sans.org/sansfire08/
http://www.usenix.org/events/sec08/
http://www.blackhat.com/
http://www.virusbtn.com/conference/vb2008
http://sector.ca/
http://isiom.wssrl.org/
http://www.blackhat.com/
https://www.baptie.com/events/show.asp?e=160&xyzzy=2
http://www.antiphishing.org/ecrimeresearch/
https://www.isc2.org/cgi-bin/events/information.cgi?event=58
http://www.rsaconference.com/2008/Europe/
http://www.csiannual.com/
http://www.aavar.org/avar2008/index.htm
http://www.virusbtn.com/virusbulletin/subscriptions/
mailto:editorial@virusbtn.com
http://www.virusbtn.com/

CONTENTS

S1JULY 2008

NEWS & EVENTS
NEW BEST PRACTICES FOR ISPs
Two new sets of best practices for ISPs have been issued
by the Messaging Anti-Abuse Working Group (MAAWG),
aiming to help block spam sent from botnets and improve
the deliverability of consumers’ emails.

The fi rst paper, ‘MAAWG methods for sharing dynamic IP
address space information with others’, addresses the issue
of blocking botnet spam. MAAWG already recommends
that ISPs block traffi c from machines on dynamic IP
addresses that send email on port 25 (which is likely to be
botnet spam) but, since this is not a viable solution for all
ISPs, the new paper provides alternative recommendations.
The paper describes various ways in which ISPs can share
their dynamic space information among one another, thus
allowing them the opportunity to reject mail traffi c from
dynamic address space.

The second paper, ‘MAAWG recommendations: email
forwarding best practices’, proposes methods to help
distinguish legitimate customers using a mail forwarding
facility from spammers. Many email users have their mail
forwarded from one address to another. However, as these
addresses receive and forward spam as well as legitimate mail,
it is possible for the user’s ISP to treat the forwarding service
as a spam source and block all incoming mail from it. The
MAAWG paper sets out a number of best practices that can be
adopted by volume forwarders and the receivers of forwarded
mail that will help ensure legitimate mail is delivered. Both
papers are available from http://www.maawg.org/.

EVENTS
The 14th general meeting of the Messaging Anti-Abuse
Working Group (MAAWG) will be held in Harbour Beach, FL,
USA, 22–24 September 2008. See http://www.maawg.org/.

CEAS 2008 will take place 21–22 August 2008 in Mountain
View, CA, USA. See http://www.ceas.cc/2008/.

COMMENT
SPEAR PHISHING – ON THE
RISE?
Paul Baccas
Sophos, UK

The spam traps at SophosLabs receive millions of emails
every day. We have complex internal systems that process
these emails. The majority of the emails are classifi ed as
spam automatically, and as such they may never be seen
by a human (yes, researchers are human). As a researcher
therefore, I tend only to see spam that is causing our
customers a problem – in other words, emails that are not
being classifi ed automatically or that are not being received
by our spamtraps.

Recently, we have seen an increase in targeted phishing, or
spear phishing campaigns. These campaigns are not being
seen by traditional spamtraps, though they are being seen by
our customer base.

SPEAR PHISHING
Spear phishing is the targeted phishing of users. By
pretending to be an internal employee – often an IT
administrator – the phisher gains access to local credentials.
Once the bad guys have local credentials they may use that
information for a variety of purposes:

• To hack the box in order to install malware (spambots
etc.)

• To hack other users’ information

• To phish other users in the company

• To gain further information from the customer

The issues of security information reuse mean that once
someone has obtained one password then they may have
access to several others.

For example:

• A phisher sends an email to joe.doe@company.x under
the pretence of being an IT administrator and asks for
the user’s username and password.

• Joe Doe enters his details into a website. Username:
jdoe & Password: Lakers

S1 NEWS & EVENTS

S1 FEATURE

 Spear phishing – on the rise?

http://www.maawg.org/
http://www.maawg.org/
http://www.ceas.cc/2008/

SPAM BULLETIN www.virusbtn.com

JULY 2008S2

• This information tells the phisher the format of
Company X usernames (fi rst initial followed by
surname) and that the company does not enforce strong
passwords (and therefore they are susceptible to a
dictionary search).

• The information also leads the phisher to suspect
that Joe is a basketball fan – often secondary security
information is sports related.

EXAMPLE
In Figure 1 we see a typical text-based phish requesting the
recipient’s email username, password etc. In the ‘To’ fi eld is
the address of a member of staff or student at Oxford Brookes
University, and there were a large number of addresses in the
CC fi eld (including my work email address – and Brookes
is not even my alma mater). The ‘From’ addresses is forged.
However, it only takes one person to give away their details
for a phishing campaign to be successful.

Once the phisher has one piece of personally identifi ed
information (PII) it makes it easier for them to gain other
pieces.

ON THE RISE?
Phishers phish for economic reasons. Both direct phishing
of bank details and spear phishing for personal information
ultimately generate an income for the phisher. However,
direct phishing is becoming less profi table for a number of
reasons, which can broadly be categorised into social and
technological:

• Social reasons:

– User education. Education has raised the level of
awareness among users of the dangers of phishing,
and as a result users are becoming more wary of the
emails they receive and less likely to be tricked.

– Bank effort. Many banks alert their customers when
a phishing attack is known to be targeting their
organization. Some are also beginning to change their
style of communication with their customers to avoid
confusion with phishing emails – for example by not
including any links to their sites and instead requiring
the customer to enter the bank’s URL manually or to
bookmark the site.

• Technological reasons:

– Browser enhancements and add-ons that fl ag
suspected or known phishing sites.

– Proactive anti-phishing rules incorporated into
anti-spam products.

In my opinion it is the last of these that has had the greatest
impact on the profi tability of the more traditional phishing
methods. As a result, phishers are moving away from direct
phishing and concentrating their efforts instead on spear
phishing or on another more lucrative business.

Spear phishing is less effi cient than direct phishing for a
number of reasons:

• A smaller volume of phishes are sent.

• Better spam fi ltering means that the number of phishes
that reach the recipients may be very low.

• More effort is required to extract the profi t.

• User education means that users are wary of giving
away personal information such as that requested in
spear phishes (although they are more likely to expect
emails from and reveal information to IT staff).

But for the phisher, the plus side of spear phishing is that
the lower volume of emails and their targeted nature mean
the phish have lower visibility to spam fi ltering software,
and as a result spear phishing is becoming more popular
among phishers.

CONCLUSION

Spam is nearly all about the perceived fi nancial reward for
the spammers. Phishing is all about the economic reward,
and as long as one person falls victim to the scam, phishers
will keep on phishing. As one modus operandi becomes
unprofi table another will open up. You can guarantee that
somewhere in the world a phisher is thinking, à la Cuba
Gooding Jr., ‘Show me the money’.

Figure 1: Example of a spear phish from PureMessage
quarantine sent to me.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

