
JULY 2011

CONTENTS IN THIS ISSUE

IS
S

N
 1

74
9-

70
27

Fighting malware and spam

2 COMMENT

 Tumblr attacks – what to watch out for

3 NEWS

 Anti-phishing feature for Gmail

 Spam levels take a nose dive

3 VIRUS PREVALENCE TABLE

 MALWARE ANALYSES

4 Toll fraud: SipPhreak

8 SpyEye malware infection framework

13 TECHNICAL FEATURE

 Reversing Python objects

18 FEATURE

 Not so random

23 END NOTES & NEWS

MODULAR DESIGN BENEFITS
The SpyEye bot has a sophisticated, modular
design that has allowed it to improve its capabilities
over time. Aditya Sood and colleagues examine
SpyEye’s modules and provide an insight into the
design and methods of the bot, and into an effective
instance of modern malware.
page 8

HIDING PYTHON
As Python has gained popularity with malware
writers, new bytecode obfuscation techniques have
started to appear. Aleksander Czarnowski describes
some of those techniques.
page 13

RANDOM GENERATOR
Pseudorandom generators are increasingly
becoming an integral component of modern
malware. Raul Alvarez shows how Confi cker uses a
pseudorandom generator to produce random domain
names while retaining its ability to communicate
with the Command and Control (C&C) server.
page 18

2 JULY 2011

COMMENT

Editor: Helen Martin

Technical Editor: Morton Swimmer

Test Team Director: John Hawes

Anti-Spam Test Director: Martijn Grooten

Security Test Engineer: Simon Bates

Sales Executive: Allison Sketchley

Web Developer: Paul Hettler

Consulting Editors:
Nick FitzGerald, Independent consultant, NZ
Ian Whalley, IBM Research, USA
Richard Ford, Florida Institute of Technology, USA

TUMBLR ATTACKS – WHAT TO
WATCH OUT FOR
Recent statistics show that the four-year-old Tumblr
blog-hosting service now has more users than the
eight-year-old Wordpress. Given such popularity, it
should come as no surprise that the service is coming
under fi re from scammers and spammers, and users of
Tumblr would do well to steer clear of the following
examples to keep their accounts safe from harm.

1. Reblogging scams

Reblogging content is the heart and soul of Tumblr
– however, it’s easy to fall for viral scams based on
chain letter tactics. Messages warning ‘Your account
will be deleted if you do not reblog this’ are common
– some reaching as many as 137,000 ‘notes’ (which
includes comments and reblogs). The situation is not
helped by the fact that those who are more security-
aware can only warn other users about the scam by
reposting the original message. The above example
actually linked to a Japanese disaster donation post by
the Tumblr staff, but users were more eager to reblog
than to check the source.

Reblogging a scam wouldn’t look good from a corporate
account – especially if you fell for the recent ‘Reblog
this to get a free giraffe from the Tumblr staff’ hoax.

2. Sockpuppet attacks

For various reasons, Tumblr users tend to come under
attack every so often from malicious users who create
large numbers of sockpuppet (bogus) accounts, then
follow legitimate users. The idea behind the attacks is
that the legitimate users follow the sockpuppet back,
at which point the attacker posts gore/shock images.
When this happens, the legitimate user will see those
images displayed on their ‘dashboard’ (which is
effectively their Tumblr homepage, and the way in
which Tumblr users see content posted by the people
they follow).

If you are in charge of managing your company’s Tumblr
account, this is not content you want to appear on the
corporate network. Always be wary of randomly named
accounts (which often have no avatar) that follow you.
If in doubt, don’t feel under pressure to follow another
user back.

3. Random content

Although not usually quite as serious as the sockpuppet
attacks, even legitimate Tumblr users can (and do)
post random content. This can range from landscape
photography to pornography. As the latter isn’t
something you would want on your corporate network,
think twice about the users you follow (if any) from a
corporate account.

4. Spam attacks

Spam attacks tend to come in waves. A recent collection
of Tumblr blogs promoted a so-called ‘Tumblr IQ Test’.
When clicked, the user would be directed to various
offers and promotions. Unlike the sockpuppet attacks,
the profi les that were hosting these ‘IQ test’ links
appeared to have been legitimate accounts until the
spammy links were posted – which suggests that the
spammer may have been using stolen login credentials.
It goes without saying that you should keep your
Tumblr login safe, and also ensure that you use different
logins for all sites. The recent spate of logins stolen
and released in the wild should be ample illustration of
why it is important not to use the same credentials for
multiple sites.

Tumblr is defi nitely a hot property for scammers, and
users should be very careful. We recently uncovered a
phishing scam that lured users in with the promise of
hidden pornography. Further exploration of the sites
involved revealed up to 8,000 stolen accounts sitting on
one of the phishing URLs. How many of those users
recycle passwords on everything from email to Internet
banking? And how long will it be before Tumblr-specifi c
malware arrives?

‘Tumblr is
defi nitely a hot
property for
scammers, and
users should be
very careful.’
Christopher Boyd
GFI Software

3JULY 2011

VIRUS BULLETIN www.virusbtn.com

NEWS
ANTI-PHISHING FEATURE FOR GMAIL
Users of Google’s webmail service Gmail are to be given
an extra helping hand in avoiding phishing scams thanks to
new a feature that displays additional information about the
sender of the email.

If an email arrives from a sender with whom Gmail believes
the user has not communicated previously, the entire email
address will be displayed next to the sender name. Gmail will
continue to display the full address until it has ascertained
that the sender is genuine (e.g. the user has sent replies to the
email or has added the sender to their address book).

Meanwhile, if Gmail determines from the message headers
that an email was sent via a third-party, it will display the
sender name followed by ‘via’ and the third-party domain
name. This should give users a heads up that a message that
appears to be from someone they know has not actually been
sent by them. Organizations that use third-party mailing
services can avoid this fl ag by publishing SPF records that
include details of the mailing services they use, or by signing
messages with a DKIM signature associated with their
domain.

Google has also addressed the spate of Gmail phishes by
adding a warning to messages that appear to have come
from a Gmail account but whose authentication data is
missing. The warning reads ‘This message may not have
been sent by [sender]@gmail.com’. These warnings should
give users cause to stop and carefully consider the content
of the email before following any links or sending personal
information. A ‘report phishing’ link is also provided.

By introducing these simple measures, Gmail hopes to
signifi cantly reduce the number of its users falling victim
to phishing scams – other email services would do well to
follow suit.

SPAM LEVELS TAKE A NOSE DIVE
Spam levels have seen a signifi cant drop in recent months
according to Symantec. The company reports that the
volume of spam reached 90% of all email traffi c last year,
but has recently dropped to just 72.9%.

Several factors appear to have contributed to the decrease
including the closure last autumn of Spamit, one of the
largest fake pharmacy affi liate programs, and the takedown
of the Rustock botnet (which at its peak was responsible for
47.5% of all spam). There has also been an 80% drop in the
amount of spam sent by the Bagle botnet since March.

Overall, sending spam seems to have become less attractive
for criminal operators. However, researchers have noted
that at the same time as the drop in spam there has been an
increase in DDoS attacks – suggesting that botnet owners
may be looking for other ways in which to generate profi t.

Prevalence Table – May 2011 [1]

Malware Type %

Autorun Worm 14.77%

Heuristic/generic Virus/worm 9.14%

Confi cker/Downadup Worm 7.14%

Adware-misc Adware 6.69%

Downloader-misc Trojan 4.70%

Sality Virus 3.38%

AutoIt Trojan 3.33%

Heuristic/generic Trojan 2.83%

Exploit-misc Exploit 2.74%

Crack/Keygen PU 2.70%

Kryptik Trojan 2.58%

Agent Trojan 2.55%

Iframe Exploit 2.12%

Crypt Trojan 1.99%

Virut Virus 1.83%

OnlineGames Trojan 1.77%

BHO/Toolbar-misc Adware 1.73%

Redirector PU 1.68%

StartPage Trojan 1.49%

FakeAlert/Renos Rogue 1.25%

Dropper-misc Trojan 1.20%

Themida Packer 1.17%

Injector Trojan 1.13%

VB Worm 1.09%

MyWebSearch Adware 1.04%

Encrypted/Obfuscated Misc 0.82%

Delf Trojan 0.79%

Mabezat Virus 0.67%

LNK Exploit 0.63%

Ramnit Trojan 0.63%

Clicker-misc Trojan 0.62%

Brontok/Rontokbro Worm 0.61%

Others [2] 13.18%

Total 100.00%

[1] Figures compiled from desktop-level detections.

[2] Readers are reminded that a complete listing is posted at
http://www.virusbtn.com/Prevalence/.

http://www.virusbtn.com/Prevalence/

VIRUS BULLETIN www.virusbtn.com

4 JULY 2011

MALWARE ANALYSIS 1
TOLL FRAUD: SIPPHREAK
Alexis Dorais-Joncas
ESET, Canada

While performing a routine check on one of our honeypots,
a new, particularly large program fi le caught our attention: a
17MB PE (Portable Executable) fi le.

After analysis, we identifi ed the fi le as being the complete
distribution of PHP 5.3.5 for Windows bundled with a
malicious PHP script. ESET detects this threat as
PHP/SipPhreak.A.

The script acts like an ancient SMTP open relay scanner,
but with a twist: it targets open or vulnerable SIP devices1
instead of mail servers.

This paper gives an overview of the malware’s infection
vector and its installation procedure, followed by an
analysis of the malicious script itself. Finally, an overview
of the malware’s activity during the observation period will
be presented.

INFECTION VECTOR AND INSTALLATION

The SipPhreak installer was collected from a machine
infected with Win32/Peerfrag. We were able to determine
that it was dropped by a secondary infection of the
Win32/Restamdos trojan. Figure 1 shows the infection
path.

Figure 1: SipPhreak infection source.

It is interesting to note that the Restamdos and SipPhreak
command and control servers (C&C) and the SipPhreak

1 Wikipedia defi nes the Session Initiation Protocol (SIP) as ‘an
IETF-defi ned signalling protocol, widely used for controlling
multimedia communication sessions such as voice and video calls over
Internet Protocol.’

installer location are all hosted on the same IP address
located in Moldavia.

Figure 2: Source of the SipPhreak infection.

The SipPhreak installer is a self-extracting archive (SFX).
These fi les are compressed archives that extract their
content when executed. They are commonly used as
legitimate software installers.

In the case of SipPhreak, the archive contains the entire
original distribution of PHP 5.3.5 for Windows and two
additional fi les: an unused batch fi le (start.bat) and the
malicious PHP script (bc.php). The archive content is shown
in Figure 3.

Figure 3: Content of SipPhreak’s self-extracting archive.

Interestingly, the author did not seem to care very much
about the size of his malware. Several unused libraries, PHP
modules and even documentation text fi les were left in the
archive, contributing to its large size.

When executed, the SipPhreak SFX silently extracts its
content to C:\windows\bc2. Once the extraction is complete,
a pre-confi gured post-extraction command launches the

VIRUS BULLETIN www.virusbtn.com

5JULY 2011

malicious PHP script. Figure 4 shows the command used
to start bc.php.

Figure 4: Auto-starting the PHP script after extraction.

ANALYSIS OF THE MALICIOUS PHP FILE
Unsurprisingly, the code inside bc.php is obfuscated. All
variables and function names are one letter long, and no
new lines or indentations are present. A quick look at
Figure 5 should be enough to convince you that the only
thing you can expect from trying to understand this code
(as-is) is a headache.

The fi rst step towards getting a readable script was to use
some sort of PHP formatter tool. We used a free online
tool called PHP Formatter, which successfully added
the missing indentation and new lines. But even when
formatted correctly, the code was not exactly clear. We had
to read through it and follow the control fl ow, changing
the variable and function names to meaningful ones and
adding comments along the way. We ended up with fully
documented PHP source code (see Figure 6) and were
fi nally able to discover all the malware functionalities.

The most interesting part of the code is the main loop,
where the script waits for commands from the C&C.
Figure 7 describes the fi ve different commands available.

We can see that the malware is quite powerful: the ‘!’ and
‘~’ commands literally provide a backdoor functionality.
However, during our observation period neither of these
commands were used. The command most commonly
observed was the ‘R’ command, used to perform a SIP
scan on a range of IP addresses. The variety of parameters
available for this command makes it quite fl exible.

An example of a typical ‘R’ command sent by the C&C is
shown below:

R 60 44207066xxxx 00,011 55 0 0 asterisk

An explanation of each parameter used is given in Figure 8.

Figure 9 shows the scan algorithm. In essence, every target
IP is sent one INVITE per country code/phone number
combination.

Looking at the clean version of the PHP script also allowed
us to analyse the quality of the source code. We would
say that it is above average quality for malware code, with
clearly separated functions, decent error handling and no
debugging leftovers.

However, despite well-conceived source code, the script’s
execution is not as stealthy as one would expect. The SIP
scans are not throttled, meaning that the script can easily
saturate the system resources by issuing hundreds of SIP
requests every minute.

Figure 5: Obfuscated PHP code.

Figure 6: Cleaned up source code.

VIRUS BULLETIN www.virusbtn.com

6 JULY 2011

MALICIOUS ACTIVITY
Once initialized, the malware fi rst contacts its C&C to
receive orders. With the exception of a few ‘$’ commands
to customize the OPTIONS payload, all the commands

Command
description

Command example

Inform the bot
of its public IP
address

#xxx.xxx.119.20

$ Set a specifi c SIP
invite OPTIONS
template to be used
for future scans,
BASE64 encoded

$T1BUSU9OUyBzaXA6dXNlcm5hbWVAe1J[…]

! Execute the given
string with system()

if ($l[0] == ‘!’) {

 system(trim(substr($l, 1)));

 continue;

}

~ Eval the given
string with eval()

if ($l[0] == ‘~’) {

 eval(trim(substr($l, 1)));

 continue;

}

R Perform a SIP
INVITE scan

R 60 44207066xxxx 00,011 55 0 0 asterisk

xx09348549 xx09348549

xx97188673 xx97188673

[…]

Figure 7: SipPhreak commands.

Param Example Description

1 60 Number of IP ranges included in
command

2 44207066xxxx Phone number to contact

3 00,011 Country codes (comma-separated)

4 55 Number of seconds to wait before
asking for another batch of IPs

5 0 Unused

6 0 Undetermined

7 Asterix User agent to use in INVITE requests

8+ 2130706433
2130706687

(127.0.0.1 /
127.0.0.255)

Pairs of IP blocks to scan (start IP / stop
IP), in base10 format. To scan a single
address, use the same IP for start/stop

Figure 8: ‘R’ command syntax.

received during our observation period were ‘R’ commands,
issued to scan one or more IP address ranges (see Figure 7
for a description). Over time, the command was issued with
quite a wide variety of country codes and phone numbers.

Country codes
00
01
9

9011
0011
000
0001
011
123

Figure 10: Country codes sent by the C&C.

Researching these phone numbers yielded very few hits on
Google. One of the few numbers we found was in a recent
forum post by an unhappy PennyTel user who reported that
his account had been compromised. At fi rst he saw incoming
probing with the phone number 44207347xxxx, followed by
real communications established with various countries:

‘Last week, I had my account hacked. The attack
started with some calls to UK number 44207347xxxx.
A simple search on Google shows this number is
associated with probing of asterisk type of VoIP
systems. After the probing, some real calls were made
to destinations such as El Salvador, Ghana, Haiti and
Nepal.’ [1]

During the observation period we saw the C&C trying to
scan approximately 4,000,000 IP addresses, with very few
duplicates. As shown in Figure 12, the vast majority of these
IP addresses were located in Germany.

During our investigation we intercepted traffi c from infected
hosts to the C&C server. Along with the IP, the specifi c
SIP response code and the device’s User Agent string are
reported. Figure 13 shows that one specifi c type of device,
AVMFritz, was clearly prevalent.

for each range in ip_ranges {
for each ip in range {

for each code in country_code {
for each phone_no in phone_numbers {
scan_ip(ip, code, phone_no)

}
}

}
}

Figure 9: Scan algorithm.

VIRUS BULLETIN www.virusbtn.com

7JULY 2011

CONCLUSION

It is likely that this malware operation is the initial step
in a broader toll fraud scheme. The idea is to fi nd poorly
confi gured SIP gateways that allow an attacker to connect
to their SIP sites and then translate the calls to the PSTN
network. The attacker can then initiate costly overseas
calls or even call his own premium numbers (collecting
the money directly), all at the expense of the device owner.

The Australian Honeynet Project has published interesting
studies in this area at HTCC2010 [3] and the Honeynet
Workshop 2011 [4].

VoIP toll fraud is likely to become more popular
as businesses continue to convert their telephone
infrastructure to VoIP solutions. Way too often, we see
news reports of incidents that cost small and medium
businesses enormous amounts of money after switching to
Internet telephony.

The hackers target any kind of organization, from a small
charity in Flintshire in the UK that was hit for a few
thousand pounds [5], to the Canadian law fi rm Martin &
Hillyer, which received a $207,000 bill from Bell Canada
for long-distance calls to Sierra Leone that its staff had
never made [6].

In addition to toll fraud, organizations are also vulnerable
to a range of targeted threats including industrial
espionage, intellectual property theft and eavesdropping
– all of which can result in far greater damage than toll
fraud. Unsecured VoIP infrastructures can allow an attacker
to gain full access to phone conversations, voicemails and
more. Imagine the consequences if the attacker was your
closest competitor.

It is imperative that businesses and individuals properly
secure their VoIP infrastructures. If they do not have the
expertise to do so internally, they should hire an external
fi rm so as to avoid becoming another victim.

REFERENCES

[1] Pennytel account hacked.
http://forums.whirlpool.net.au/archive/1659122.

[2] http://www.oldskoolphreak.com/tfi les/phreak/
inner_london_9999.html.

[3] Reardon, B. HTCC2010, AISA Melb, AISA Sydney.
http://honeynet.org.au/fi les/Australian_high_tech_
crime_conference_slides.pdf.

[4] Usken, S.; Reardon, B. Honeynet Workshop 2011,
‘VoIP Security’. http://www.honeynet.org/fi les/
voip_security.pdf.

[5] Flintshire charity toll fraud.
http://www.fl intshirechronicle.co.uk/fl intshire-news/
featured-stories/2010/11/04/phone-scam-could-
cost-fl intshire-charity-thousands-of-pounds-51352-
27595016/.

[6] Martin & Hillyer billed $207,000 after hacker
breach. http://www.cbc.ca/news/canada/ottawa/
story/2009/01/27/phones-hacked.html.

First seen Number Description

1 Feb 44207347xxxx This phone number is referenced
in an old article about scanning
inner-London 9999 numbers
with good old US Robotics
modems [2]

7 March 44207066xxxx Financial Services Regulation
offi ce, London

21 March 44207066xxxx Enquiries and Applications
Department of the Financial
Services Regulation offi ce

Figure 11: Phone numbers sent by the C&C.

Figure 12: Proportion of IPs scanned, by country.

Figure 13: Proportion of valid devices, by UserAgent string.

http://forums.whirlpool.net.au/archive/1659122
http://www.oldskoolphreak.com/tfiles/phreak/inner_london_9999.html
http://honeynet.org.au/files/Australian_high_tech_crime_conference_slides.pdf
http://www.honeynet.org/files/voip_security.pdf
http://www.flintshirechronicle.co.uk/flintshire-news/featured-stories/2010/11/04/phone-scam-could-cost-flintshire-charity-thousands-of-pounds-51352-27595016/.
http://www.cbc.ca/news/canada/ottawa/story/2009/01/27/phones-hacked.html

VIRUS BULLETIN www.virusbtn.com

8 JULY 2011

SPYEYE MALWARE INFECTION
FRAMEWORK
Aditya K. Sood, Richard J. Enbody
Michigan State University, USA

Rohit Bansal
SecNiche Security, USA

Recently, the SpyEye bot has been infecting machines
across the Internet, and since it targets online banking it
has the potential for signifi cant damage. We have dissected
and analysed multiple generations of the SpyEye bot to
learn how it infects systems, how it hides its presence, and
how it gathers information. SpyEye has a sophisticated,
modular design and has improved its capabilities over time.
It behaves like a Ring 3, application-layer rootkit in that it
applies hooks into applications to run its modules instead
of Windows code. We examine SpyEye’s modules and map
out how they are initialized and how they interact with
each other. We have observed the bot in action and tracked
changes in the registry and other fi les. The details provide
an insight into the design and methods of the bot, and into
an effective instance of modern malware.

INTRODUCTION

When asked why he robbed banks, notorious bank robber
Willie Sutton famously answered: ‘That’s where the
money is!’. Today’s online criminals follow the same
reasoning, but with a twist: rather than targeting the banks
themselves, they attack the banks’ customers as they carry
out transactions online. Widely deployed sophisticated bots
reside on victim machines and become activated when a
target (banking) website is loaded in a browser. The SpyEye
bot is an example of such a piece of malware [1, 2].

A signifi cant amount of research is being conducted to
understand the design and exploitation tactics used by
banking malware to corrupt access to fi nancial websites
and bank domains. Our analysis of SpyEye is based on
the fact that it is essential to understand the design of
the various components that are put together to build a
composite framework for spreading the malware – it is
diffi cult to design a solution if the malware framework is
not suffi ciently well understood.

BACKGROUND

Bots [3] are used extensively as part of malicious
frameworks to infect victims’ machines and turn control
of the machines over to the attacker(s) via a central server.

In general, bots are stealthy programs that run as hidden
processes in the context of the system. Once installed, a
bot takes control of the victim’s machine and uses network
connections to transfer data to the controller domain. When
a number of bots are interfaced to a single control server,
they form a botnet – a network of bots. Traditionally,
botnets have harnessed the collective power of the infected
machines to attack dedicated targets for exploitation and
to take down networks via distributed denial of service
attacks. Recently, some bots have been designed for
the purpose of individual operations rather than joining
forces for combined attacks, meaning that attackers have
an increased ability to harvest data – in particular users’
banking information.

Most bots exploit users’ lack of security awareness. Users
are often unaware of malware operations taking place on
their machines. Many users believe that the fi rewalls and
anti-virus software that they use will protect them from all
malware. Users are often unable to differentiate between
legitimate and illegitimate websites. Users often have little
or no idea of the capabilities of web malware to exploit
their system. Finally, users often harbour misconceptions
about the ability of limited access accounts to protect them
from malware [4]. Collectively, all these factors play a
critical role in the successful execution of web malware and
system exploitation.

A bot is an executable that installs itself on the victim
machine and performs stealthy functions by manipulating
API calls. Sophisticated malware has built-in anti-protection
features designed to thwart fraud detection systems which
are triggered by unusual transactions. For example, a stealth
banking bot is capable of rewriting bank statements using
a user’s credentials. We have found in SpyEye a keystroke
logger that captures the user’s bank credentials and
transfers them to the control server. The keystroke logger
[5] remains dormant until the target (banking) website is
loaded into the browser. Some bots also take screenshots of
the user’s activities on banking sites to circumvent anti-
keylogging protection.

Many web malware frameworks exploit browser fl aws to
install bots via drive-by downloads. In general, drive-by-
download attacks infect a system with a dropper fi le. The
dropper is a compressed executable which, when activated
in the system, extracts to create a bot. Droppers are used
to bypass anti-virus checks and thus to help successfully
load the bot onto the victim machine. Early versions of
SpyEye employed a generic dropper, but newer versions
use customized exploits. Another advanced characteristic
we see in SpyEye is a new model of exploitation and
native SDK used for designing malicious plug-ins – factors
that make SpyEye a bit different from other exploitation
frameworks. One bot framework that is similar to SpyEye

MALWARE ANALYSIS 2

VIRUS BULLETIN www.virusbtn.com

9JULY 2011

A generic model of SpyEye is shown in Figure 1. The
design of SpyEye constitutes four major components which
are described in the following sections.

SpyEye builder
The builder is the main component of the SpyEye
framework. It is used to generate a bot based on the specifi c
build settings defi ned in a confi guration fi le. The builder
component uses confi guration fi le entries to execute various
modules and functions for assembling the malicious code.
When this code is compiled, an executable is generated.
This is a self-sustainable executable with the capability
to perform stealth functions and network operations. The
entries in the confi guration fi le specify paths to local
and remote resources which are used to include modules
dynamically. The confi guration fi le resides in the main
admin panel and it is included during the build process.

The SpyEye builder is protected with a collaborative
protection mechanism using VMProtect [10] and Hardware
Identifi er (HWID) [11]. VMProtect is used for obfuscation
whereby machine instructions are changed into pseudocode.
The generated binary has a small VM instruction interpreter
which converts the pseudocode to machine instructions
on execution. The pseudocode generated by VMProtect
is always randomized and there is no standard output,
thus making it time-consuming and hard to analyse.
VMProtect can be reverse engineered by converting
pseudocode instructions to assembly instructions, but this
is a labour-intensive process. HWID is used in SpyEye
to provide licences to single machines so that the builder
cannot be installed on a different machine. Licensing also
complicates analysis.

Thanks to the protection mechanisms it took signifi cant
effort to pull the code apart for analysis. Both the
VMProtect and HWID mechanisms had to be reverse
engineered and then applied. Furthermore, if the
parameters were not applied carefully with respect to our
analysis code, the system would detect a difference and
the malware’s inbuilt protection mechanism could shut it
down. It is possible that the building of the SpyEye bot
may not occur at the primary control server. Some of the
components of the SpyEye framework are decentralized
across the web. The installation and confi guration fi les
are usually present on the main botnet servers. As the
confi guration fi le is included from the remote server,
an appropriate encryption key is used to maintain the
integrity of the fi le. Because of the built-in integrity check,
tampering with the confi guration parameters as part of
the analysis process sometimes results in the shutdown
of the SpyEye framework. The builder uses a connection
interval property to avoid delays while the confi guration

is the Zeus framework [6, 7], which also targets online
banking – SpyEye has added a detection module [8, 9] for
killing the Zeus bot if it is found on the infected system.

During the course of this analysis, various versions of
SpyEye have been analysed to mark the developmental
changes taking place.

UNDERSTANDING THE DESIGN OF
SPYEYE
SpyEye is designed in a modular fashion with a number of
components that work together collectively. The modular
design allows for the enhancement of specifi c capabilities in
real time. The dynamism of this design plays a key role in
the bot’s success and its ability to collect information from
infected machines. The goal for SpyEye is a mass infection
of the web. Such a widespread infection is possible only if
the design of the malware framework is good enough and
dynamic enough to bypass generic security protections.
The SpyEye dropper fi le includes various confi guration
parameters such as a path to the control domain as well
as to the main admin and form grabber control panels
(described later). When the dropper executes on the victim
system, it generates an encrypted confi g.bin fi le as well as
the SpyEye bot itself, which is named ‘cleansweep.exe’
by default. However, SpyEye stopped using the dropper
after version 1.0.75. Nowadays, a builder generates the bot
directly with customized names utilizing modular controls
in the builder.

Figure 1: SpyEye infection framework.

SpyEye Framework

SpyEye Builder

Main Admin

Form Grabber Admin

Backend Collector

Target Machine

Data
Stealing

Bot Updates

Logs

VIRUS BULLETIN www.virusbtn.com

10 JULY 2011

fi le is in transfer mode. The generated SpyEye bot can
be packed with UPX in order to reduce its size. This
compression both helps in the rapid downloading of bots to
victim machines and adds an additional step to the reverse
engineering process.

SpyEye infects browsers and exploits their inherent
functionality in order to steal information. Some bots can
remove cookies from the victim machine – the builder
has a self-initiated module of cookie cleaning that can be
included during compilation. Plug-in capabilities and web
injects can be rendered into the bot during the build process.
SpyEye uses a ‘SPYNET’ mutex that allows it to run in a
multi-threaded environment. It creates the mutex with a
unique name during the build process.

Main admin panel
The second component consists of the admin panel. This
controls the structural dependencies and administrative
operations of the SpyEye bot. It is the information hub that
is central for performing various functions in the building
of the bot. The admin panel provides updates to the SpyEye
builder for confi guration and building an executable. It
keeps track of the various changes that are taking place in
the building process and updates it with further information.
In addition, the admin panel is responsible for controlling
the nature of the plug-ins that are used by the SpyEye bot
for infecting machines. The admin panel uses three metrics
for defi ning the plug-in control. These metrics include
plug-ins used, plug-in count and global identifi ers for
performing actions. Global actions are defi ned based on
the infection statistics from various countries. These global
actions provide wide control over the operations of bots
by distinguishing them geographically around the world.
The admin panel also provides a description of third-party
infection by loading an executable from the primary bot.
This is a part of chain infection in which one bot interacts
with another through the admin panel.

The main admin panel generates a statistical output of
various infections in the form of graphs segregated into
various metrics such as number of infections, countries
infected, etc. The admin panel is the main controller of
the stolen information in all versions of SpyEye. In newer
versions, the database is separated from the admin panel
to reduce complexity in order to increase the performance
of individual components in the framework. A new credit
card manipulation module has been added in order to
change users’ critical information. This module performs
modifi cations in the credit card information stored on
banking websites. Successful operations result in a change
in information (such as credit card pin number) without the
user’s knowledge. Another module is designed to generate

and delete billing entries in the compromised user account.
This type of infection aims to remove all traces of illegal
operations in the user account. Newer versions have DDoS
and web inject plug-ins that work on all types of browsers.

Form grabber admin panel

A primary goal of SpyEye is to steal banking information
from victims’ browsers in order to perform fraudulent
activities later. The form grabber is designed to grab user
account credentials from web forms used for banking
transactions. Primarily, this form grabber is the basis for
keylogging activities on infected victim machines.

The keystrokes can be captured in two ways. First, the
keylogger (a.k.a. form grabber) grabs all the keystrokes and
dumps them into a log fi le. Second, the bot has a built-in
capability to take screenshots of every keystroke on the
victim machine. Screenshots are useful for working around
anti-keylogging defences. The bot is activated when a
bank’s website is loaded into the victim’s browser. The bot
takes screenshots of keyboard activities and sends them
back to the admin panel as shown in Figure 2.

The form grabber admin panel tracks all the developments
made by the SpyEye bot installed in the victim machine.
The stolen credentials are displayed in the form grabber
admin panel on a daily basis. SpyEye version 1.2.x has
a different set of PHP fi les used for stealing credentials
and managing log data. Every form has a specifi c module
associated with it. For example: frm_cards_edit.php has a
module mod_cards_edit.php which is designed as shown in
Figure 3.

Figure 2: Keyboard screenshots captured by the SpyEye bot.

VIRUS BULLETIN www.virusbtn.com

11JULY 2011

Figure 4: SpyEye BOA grabber module.

Figure 3: SpyEye’s credit card edit module.

The form grabber admin panel has the following modules
incorporated in its design:

• The info module provides all the HTTP header and
response communication information with appropriate
parameters. For example, a victim opens a banking
website and starts to perform a transaction. The resident
SpyEye bot hooks that communication interface
and sends the information back to the form grabber
admin panel. All the POST and GET requests are
appropriately hooked to steal information.

• The statistical module in the form grabber admin panel
provides information about the infected websites that
a particular host visits. It is used to keep track of the
history of the victim machine.

• The form grabber admin panel has built-in functionality
for capturing screenshots from victim machines at the
time of infection. This advanced functionality subverts
anti-keylogging defences.

• SpyEye is well known for stealing Bank of America
(BOA) accounts. Our analysis has shown that SpyEye
has a built-in BOA grabber module which is very
effective at stealing BOA credentials from the victim
browser when a website is active (see Figure 4). Apart

from this, SpyEye also has FTP and POP3
account grabber modules.

SpyEye backend collector

The backend collector is a database
component of the SpyEye framework. In
general, the collector is a daemon that runs
independently of the admin panel. This
database has no dependency on the logs
circulated and stored in the main admin
panel. SpyEye provides an option for using
the collector database independently. All the
bots present in the bot network send data in
the form of log fi les, including screenshot
data, directly to the SpyEye collector. It
is implemented with PHP and a MySQL
database for fl exibility and reliability.

The backend collector uses the LZO
data compression library [12], which
has extremely fast compression and
decompression capabilities, to enhance the
optimization of traffi c. LZO is a real-time
applied compression library which is
platform independent. The speed helps
ensure that in practice there is no procedural
delay in accepting a log from a SpyEye bot.

VIRUS BULLETIN www.virusbtn.com

12 JULY 2011

REFERENCES
[1] Symantec Security Labs Report

(2010). Trojan.Spyeye.
http://www.symantec.com/
security_response/writeup.jsp
?docid=2010-020216-0135-99.

[2] McAfee Avert Labs (2007).
Trojans – A Reality Check.
http://download.nai.com/
products/mcafee-avert/blog/dc-
15-dirro_and_kollberg.pdf.

[3] New Malware.
http://www.norman.com/
security_center/security_center_
archive/2010/112804/no.

[4] Dagon, D.; Gu, G.; Lee,
C.; Lee, W. A Taxonomy of
Botnet Structures. Annual
Computer Security Applications
Conference (ACSAC), 2007.

[5] Limited Account.
http://www.prevx.com/blog/83/
Is-Limited-User-Account-
enough-Not-really.html.

[6] Holz, T.; Engelberth, M.;
Freiling, F. Learning More
About the Underground
Economy: A Case Study of
Keyloggers and Dropzones.
Reihe Informatik TR-2008-006,
University of Mannheim, 2008.

[7] Zeus Tracker. Zeus Tracker Monitor.
https://zeustracker.abuse.ch/monitor.php.

[8] Admin. ZeuS Tracker Online Again With New
Features. 19 September 2010. http://www.abuse.ch/
?p=2722.

[9] Coogans, P. Spyeye Bot versus Zeus Bot. February
2010. http://www.symantec.com/connect/fr/blogs/
spyeye-bot-versus-zeus-bot.

[10] Basics, D. SpyEye versus Zeus – Trojan
War. 14 March 2010. http://sites.google.com/
site/delphibasics/home/delphibasicsarticles/
spyeyeversuszeus-trojanwar.

[11] Rolles, R. http://www.usenix.org/event/woot09/tech/
full_papers/rolles.pdf. Usenix Woot, 2009.

[12] HWID. http://www.webopedia.com/TERM/H/
HWID.html.

[13] http://gnuwin32.sourceforge.net/packages/lzo.htm.

DLLEXPORT bool init(char *szConfi g)
{
 if (gl_GateToCollector
 {
 char szTableName[] = (“test”);
 char szFieldName[] = (“test”);
 DWORD dwFieldsCount = 1;
 PCHAR szField1Value = szConfi g;
 DWORD dwField1Size = strlen(szFieldValue);
 // ---
 DWORD dwTotalSize = 0;
 dwTotalSize += strlen(szTableName) +1;
 dwTotalSize += sizeof(dwFieldsCount);
 dwTotalSize += strlen(dwField1Name) +1;
 dwTotalSize += sizeof(dwField1Size);
 dwTotalSize += sizeof(szField1Value);
 // ---
 PSYTE pbdata = new BYTE(dwTotalSize);
 DWORD dwDataPnt = 0;
 CopyMemory(pbData + dwDataPnt, szTableName, strlen(szTableName) +1;
 dwDataPnt += strlen(szTableName) +1;
 CopyMemory(pbData + dwDataPnt, &dwFieldsCount, sizeof(dwFieldsCount));
 dwDataPnt += sizeof(dwFieldsCount);
 CopyMemory(pbData + dwDataPnt, szField1Name, strlen(szField1Name) +1);
 dwDataPnt += strlen(szField1Name) +1;
 CopyMemory(pbData + dwDataPnt, &dwField1Size, sizeof(dwField1Size));
 dwDataPnt += sizeof(dwField1Size);
 CopyMemory(pbData + dwDataPnt, szField1Value, dwField1Size);
 dwDataPnt += dwField1Size;
 // ---
#ifndef NDEBUG
 DumpPage|”C:\\dump.dat”, pbData, dwDataPnt);
#endif
 // ~~~
 gl_GateToCollector(pbData, dwTotalSize);
 // ~~~
 }
 return true;
}

Figure 5: SpyEye backend collector API code.

SpyEye provides relative functions as a part of its API as
void TakeGateToCollector(LPVOID lpGateFunc) – the code
is presented in Figure 5.

The backend collector code illustrates the simple
functioning of data collection using plug-ins, and it shows
the way data is collected and transferred back to the
backend collector.

CONCLUSION
In this paper, we have presented a comprehensive design
model of the SpyEye bot infection framework. Our
analysis of the SpyEye bot infection framework has
provided us with a unique opportunity to understand the
exploitation techniques used by SpyEye in executing
the attacks for stealing critical information from victim
machines. Design level understanding helps us to modify
our analytical methods which enable us to dissect malware
more effi ciently. We will be detailing our techniques and
the tactics of the SpyEye botnet in a follow-up article
next month.

http://www.symantec.com/security_response/writeup.jsp?docid=2010-020216-0135-99
http://download.nai.com/products/mcafee-avert/blog/dc-15-dirro_and_kollberg.pdf
http://www.norman.com/security_center/security_center_archive/2010/112804/no
http://www.prevx.com/blog/83/Is%E2%80%91Limited-User-Account-enough-Not-really.html
https://zeustracker.abuse.ch/monitor.php
http://www.abuse.ch/?p=2722
http://www.symantec.com/connect/fr/blogs/spyeye-bot-versus-zeus-bot
http://sites.google.com/site/delphibasics/home/delphibasicsarticles/spyeyeversuszeus-trojanwar
http://www.usenix.org/event/woot09/tech/full_papers/rolles.pdf
http://www.webopedia.com/TERM/H/HWID.html
http://gnuwin32.sourceforge.net/packages/lzo.htm

VIRUS BULLETIN www.virusbtn.com

13JULY 2011

REVERSING PYTHON OBJECTS
Aleksander P. Czarnowski
AVET Information and Network Security, Poland

A lot has changed since I last wrote in Virus Bulletin
about reversing Python bytecode (see VB, July 2008,
p.10). Many more malicious applications now employ
Python, and as a result, new obfuscation techniques have
appeared. The game of hiding true source code from
third-party eyes has begun. While it is understandable
that authors want to protect their intellectual property, the
evolution of code obfuscation poses potential problems
for vulnerability researchers and malware analysts. The
obvious problem is that the same obfuscating techniques
that apply to legitimate and harmless software can also
be used by malware. This article will share some new
experiences and ideas that have come from the evolution
of Python bytecode obfuscation. (Source code obfuscation
techniques are outside the scope of this article.)

REVERSING PYTHON
There are a few situations in which there is a legitimate
reason for reversing Python bytecode:

• Security assessment of the Python module or whole
class/package

• Vulnerability research/bug hunting

• Malware analysis

• Incident response/forensic analysis.

Python is very attractive for malware authors due to the fact
that, theoretically, the same module can be run on dozens of
different platforms without needing to make any changes.
Python is also installed on many Linux/Unix systems, and
the number of applications that either require or come with
an embedded Python interpreter is growing.

PYC FILE FORMAT
To understand the process of reversing Python bytecode
modules we fi rst need to understand the bytecode format
and how it can be obfuscated.

The fi rst four bytes are used by the Python interpreter to
decide if it can execute compiled bytecode. The next four
bytes are used to decide whether the compiled fi le should
be used instead of the source fi le of the same name. For
example, when executing a line such as:
python simple_script.py

the Python interpreter will fi rst check whether
simple_script.pyc (the compiled fi le) exists. If it does, then

it will check whether the timestamp from the compiled
fi le is more recent than that of the source (.py) fi le. If it is,
the compiled fi le will be executed instead of interpreting
the source fi le (and in turn compiling it to bytecode). It
is worth noting that, should any error occur during fi le
interpretation, the Python interpreter will not create a
bytecode fi le. However, it is possible to generate a bytecode
fi le that will throw an exception during execution. So
compiled bytecode cannot be treated as evidence of a lack
of code errors.

Python marshalled bytecode can be deserialized. The
result of such an operation is a ‘code’ object. One of the
most important object properties from our perspective is
co_code, which is the string representation of the object’s
byte code.

Another fi le type that is very similar to pyc is pyo. Like pyc
fi les, pyo fi les are the result of compilation to bytecode,
however in this case optimization is turned on (-o option).

Two more fi le formats are worth mentioning at this point:
pyz and egg.

A pyz fi le is a so-called ‘squeezed’ module, optionally
compressed using zlib. SqueezeTool provides the interface
to create such fi les. This format allows many Python
modules to be stored in one fi le. On Unix systems a pyz
fi le can start with a shebang line in order to allow direct
execution by invoking the Python interpreter (if installed).
Additionally, some tools can add the __zipmain__.py
module to the archive.

Egg format fi les contain a zip archive with package fi les
and resources plus an EGG-INFO subdirectory. This folder
contains project metadata.

Finally, there are tools that enable a native executable binary
to be created from Python source code. Examples of such
applications are py2exe (Windows), cx-freeze (BSD/Linux)
and py2app (OS X). The code generated by these tools is
beyond the scope of this article.

File
offset

Size Meaning

0 4 Four-byte magic number – unique for
every Python version, with the last two
bytes always set to: 0x0D, 0x0A

4 4 Four-byte timestamp which Python uses
to decide whether the module should be
recompiled from the source (.py) fi le if
the .pyc fi le has been found

8 ? Marshalled code object

Table 1: Pyc fi le structure.

TECHNICAL FEATURE

http://www.virusbtn.com/pdf/magazine/2008/200807.pdf
http://www.virusbtn.com/pdf/magazine/2008/200807.pdf

VIRUS BULLETIN www.virusbtn.com

14 JULY 2011

OTHER EXECUTABLE FORMATS IN THE
PYTHON ENVIRONMENT
Pyc fi les are not Python’s only executable form besides
source fi les. Python extension modules written in C/C++
come in the form of DLLs (on Windows systems) and ELF
fi les (on Linux/BSD systems). These modules contain
compiled native code and are platform dependent, so unlike
pyc fi les they cannot be passed between different platforms.
They cannot be exchanged between different Python
versions either, or different distributions of the same version
for the same platform. Under some circumstances, even
using a different version of the compiler from that used to
compile certain Python distributions can break the building
process.

While the executable format differs between platforms, the
Python extension API is the same. The simplest extension
one can write is the following:
#include <Python.h>

PyMODINIT_FUNC initfi rst(void)

{

Py_InitModule3(“fi rst”, NULL, “Example module’s
docstring.”);

}

Every extension module needs to export the init* function
used by the Python interpreter during the import operation.
All functions exported to Python must meet two criteria:

1. Be declared with PyObject*

2. Be declared within the PyMethodDef table.

The main entry point to the DLL is obviously
DllEntryPoint(), and later DllMain(). However, even a
disassembly shows nothing really interesting. Below is a
listing of DllMain() (64-bit) from the ctypes module:

The DllEntryPoint function code depends heavily on the
compiler used. Microsoft compilers generate code that
calls __security_init_cookie (/GS switch) and then jumps
to __DllMainCRTStartup. This then calls the DllMain()
function. However, inspection of DLL exports shows that
there are more possible entry points:

Figure 1: Python pyd module entry points.

Disassembly of init_ctypes() shows a series of internal
Py_() function calls to prepare the Python environment. The
reason for describing all these execution paths is simple:
injecting native code, hooking/inserting breakpoints or
using detours in all these places allows the execution and
behaviour of the Python interpreter to be manipulated.
Additionally, typical native code anti-debugging and
obfuscation techniques can be used in all these places
to increase the complexity of the analysis process.
Furthermore, since (in the case of Windows) such a module
is for the operating system, another DLL can hook Windows
Debugging Events in order to hijack the loading of the
Python module and load different ones in its place. If such a
new module conforms with the requirements of the Python
interpreter for external modules, then Python will happily
use it further. This ‘attack vector’ can be used in code
obfuscation techniques as well as to aid in their analysis.

.text:000000001D1AE850 ; BOOL __stdcall
 ; DllMain(HINSTANCE hinstDLL,
 ; DWORD fdwReason, LPVOID
 ; lpvReserved)

.text:000000001D1AE850 DllMain proc near ; CODE
 ; XREF:
 ; __DllMainCRTStartup+86p

.text:000000001D1AE850 ; __DllMainCRTStartup+A2p

.text:000000001D1AE850 ; DATA XREF: ...

.text:000000001D1AE850

.text:000000001D1AE850 var_18 = dword ptr -18h

.text:000000001D1AE850 hLibModule = qword ptr 8

.text:000000001D1AE850 arg_8 = dword ptr 10h

.text:000000001D1AE850 arg_10 = qword ptr 18h

.text:000000001D1AE850

.text:000000001D1AE850 mov [rsp+arg_10], r8

.text:000000001D1AE855 mov [rsp+arg_8], edx

.text:000000001D1AE859 mov [rsp+hLibModule], rcx

.text:000000001D1AE85E sub rsp, 38h

.text:000000001D1AE862 mov eax, [rsp+38h+arg_8]

.text:000000001D1AE866 mov [rsp+38h+var_18], eax

.text:000000001D1AE86A cmp [rsp+38h+var_18], 1

.text:000000001D1AE86F jz short loc_1D1AE873

.text:000000001D1AE871 jmp short loc_1D1AE87E

.text:000000001D1AE873 ; ----------------------------

.text:000000001D1AE873

.text:000000001D1AE873 loc_1D1AE873: ; CODE XREF:
 ; DllMain+1Fj

.text:000000001D1AE873 mov rcx, [rsp+38h+hLibModule]
 ; hLibModule

.text:000000001D1AE878 call cs:DisableThreadLibraryCalls

.text:000000001D1AE87E

.text:000000001D1AE87E loc_1D1AE87E: ; CODE XREF:
 ; DllMain+21j

.text:000000001D1AE87E mov eax, 1

.text:000000001D1AE883 add rsp, 38h

.text:000000001D1AE887 retn

.text:000000001D1AE887 DllMain endp

VIRUS BULLETIN www.virusbtn.com

15JULY 2011

Figure 2: Graph of default init_ctype() function shows
characteristic execution fl ow where the set of initial checks
leads to the next one unless there is a single error. This can
be used to detect init_ctype() in an obfuscated binary since

its behaviour cannot be easily changed.

EMBEDDED PYTHON CODE

Python extension modules are not the only form of native
code that is executed during Python interpreter execution.
Python provides a set of API functions to embed its
interpreter in C code. The simplest case is to call the
PyRun_SimpleString() function. The argument is a C
string containing Python code that the interpreter will try
to execute. Another useful function is PyRun_SimpleFile(),
which allows any Python source code fi le to be executed.
(For a full list of PyRun_* functions please consult the
Python documentation at http://www.python.org/doc.)

Another interesting option is to embed the complete Python
interpreter into a C application. This can be accomplished
with the Py_Main() function. The simple C code that allows
the Python interpreter to be embedded is as follows:

Py_Initialize();

Py_Main(argc, argv);

Py_Finalize();

The methods mentioned here do not cover all the possibilities
of embedding and/or extending Python, however they provide
a good overview of Python executable code and its format.

OBFUSCATION TECHNIQUES

Now that all executable forms of Python have been
described we can gain a better understanding of possible
obfuscation techniques. The techniques have been divided
into the groups shown in Table 2.

Bytecode modifi cation: magic number
modifi cation
The simplest modifi cation that stops some decompilers
and all standard interpreters is the modifi cation of the
magic number at the beginning of the bytecode fi le. Such a
change is trivial at the interpreter source code level, hence
this method is very popular. Since the number of possible
combinations of magic byte values is limited, and legal
combinations are well known, even a simple method based
on the brute force guessing of the correct value is acceptable
and is simple to automate.

A simple variation of this technique is to truncate the magic
number and add it during run time.

Bytecode modifi cation: marshalled code
object modifi cation/encryption
This set of techniques is based on the premise that pyc
fi les can be distributed in obfuscated/encrypted format and
decrypted just before run time. No interpreter modifi cation
is required as the whole encryption/decryption process can
be performed outside of the interpreter environment. The
obvious weakness of this approach is that when execution
breaks during the loading of the decrypted module, one
can gain access to it. The execution break may either be
user-generated or the result of a bug in the module itself (for
example an exception).

Interpreter modifi cation: bytecode table
modifi cation
This method has been used increasingly frequently of
late and is based on changing mapping between bytecode

Generic technique Specifi c obfuscation method

Bytecode
modifi cation

• Header magic bytes modifi cation

• Header magic bytes truncation

• Marshalled code object
 modifi cation/encryption

Interpreter
modifi cation

• Bytecode table modifi cation

• Bytecode encryption

Embedding Python
code

• Native code obfuscation
 technique

Pyd modules
modifi cation /
hijacking

• Library modifi cation

• Library execution hijacking

Table 2: Obfuscation techniques.

http://www.python.org/doc

VIRUS BULLETIN www.virusbtn.com

16 JULY 2011

values and instructions. This requires changes to the Python
interpreter but ensures that without the correct mappings,
bytecode disassembly and proper module execution is not
possible. In turn, use of the built-in dis module from the
standard interpreter installation is no longer possible.

Fortunately, in order to execute such bytecode one needs the
pyc fi le and the modifi ed interpreter. Therefore it is possible
to use the modifi ed interpreter to get corresponding bytecode
mappings and ‘decrypt’ the bytecode. The idea is quite
simple and it basically comes down to the following steps:

1. Generate a complete set of Python opcodes by using
some module source code.

2. Compile this module in the original interpreter and
list the bytecode result.

3. Compile this module in the interpreter with the
modifi ed mapping and list the bytecode result.

4. Compare the results from steps 2 and 3 and adjust the
bytecode map.

The problem with this approach is the fact that Python 2.6
has around 120 different opcodes for bytecode, so getting all
possible values can be tricky. Fortunately, we don’t need to
enumerate the whole bytecode table – we are only interested
in the values used inside the module we are analysing. As
most default Python packages (distributed in source code
form) rely on standard modules (remember the slogan:
‘batteries included’) there is a good chance we can get the
correct mappings by compiling fi les from the standard library
(lib directory). In fact, step 3 can be skipped too, since the
same standard modules are compiled to pyc form by default.

Figure 3: Using the dis module to disassemble function
code – this works only if the bytecode map hasn’t been

modifi ed and if the co_code object is intact.

Interpreter modifi cation: bytecode
encryption
This technique is based on the fact that the interpreter is
responsible for the Python bytecode module format it can

execute. Therefore modifi cation of the main interpreter code
not only allows the use of a different bytecode table but also
provides many interesting possibilities such as:

• The addition of new opcodes

• The changing of the pyc modules’ fi le format

• The changing of the marshal code object.

The last option allows code objects to be encrypted during
compilation and decrypted during run time in memory.

The number of possible techniques in this area is endless
and is limited only by how much work is required to
implement certain ‘features’.

Embedding Python code: native code
obfuscation technique
As discussed earlier there are a few different global
techniques for embedding Python code. Use of an
embedded Python interpreter not only allows its behaviour
to be changed, but also allows native code to be mixed
with Python code. All native code obfuscation techniques
(including compiling into another VM) can be applied here.

Pyd modules modifi cation/hijacking
This set of techniques is heavily dependent on target
system platforms. The functionality and implementation
of dynamic shared objects differs signifi cantly between
the platforms on which Python can run. Nevertheless, this
characteristic of Python internals can be used to further
obfuscate code or completely change execution fl ow at run
time. On the Windows platform (as mentioned already)
the Windows Debugging API or detours library seem like
perfect tools to accomplish such a task.

What is worth noting is the fact that this set of techniques
can be performed without native code but from Python code
itself. A good example is the pydbg module, which on the
Win32 platform provides all the necessary debugging API
functions to insert a breakpoint and therefore control DLL
execution.

DYNAMIC CODE EXECUTION
This is the only method based on source code obfuscation
that I’ll describe here due to its dynamic nature. The basic
idea is to store marshalled code in source code. This can
easily be done thanks to Python’s dynamic nature and
built-in functions like compile(), eval() and exec(). Here is
an example:
>>> code_str = ‘’’print ‘Hello world!’ ‘’’

>>> bytecode = compile(code_str, ‘<string>’, ‘exec’)

VIRUS BULLETIN www.virusbtn.com

17JULY 2011

>>> bytecode

<code object <module> at 00000000021ACE40, fi le
“<string>”, line 1>

>>> exec(bytecode)

Hello world!

>>> import dis

>>> dis.dis(bytecode)

 1 0 LOAD_CONST 0 (‘Hello world!’)

 3 PRINT_ITEM

 4 PRINT_NEWLINE

 5 LOAD_CONST 1 (None)

 8 RETURN_VALUE

The bytecode code object can be encrypted to further
hide its meaning, and decrypted before being passed to
exec()-like functions.

PLATFORM-DEPENDENT
ANTI-DEBUGGING TECHNIQUES
There are many different anti-debugging techniques mainly
developed for protecting native code. However, some
of these techniques can also be applied to Python code
executing inside an interpreter.

It is important to remember that the Python interpreter
process is just that: another process from the operating
system’s point of view. For example, in the case of the
Windows platform it has PEB, TEB, security tokens etc.
Therefore it is possible to initiate the Python interpreter
process using the Windows Debugging API. Obviously,
intercepting execution of the interpreter process provides us
with the ability to change its behaviour and in turn have an
impact on the execution fl ow of the Python bytecode.

Keep in mind, however, that when conducting the process
at operating system level, all the rules of anti-debugging
tricks apply as well. For example, controlling a process
with the Windows Debugging API leaves a lot of traces to
which both the debugged process and python code have

access. Therefore, to detect some debugging events we
don’t even need to modify the interpreter but instead just
use generic API wrappers provided by Python modules.
The best example to illustrate such an approach is the use of
IsDebuggerPresent() – a well-known API function used by
many anti-debugging tricks. Thanks to the ctypes module,
Python code can access this function and call it (Figure 4).

Obviously the rules mentioned above apply to both 32-bit
and 64-bit processes and systems – but don’t forget
about some important differences in the case of 64-bit
architectures in the Windows Debugging API.

INSIDE THE INTERPRETER AT RUN TIME
Since the Python interpreter is just a process running in
user-land context, we can easily debug it using debuggers.
Two possible approaches come to mind:

• Use of source code debugging if we have access to the
interpreter source code or if the interpreter comes from
python.org.

• Use of native code debugging in cases where the
interpreter source code is not available to us.

The second situation seems more likely. Assuming the
interpreter executable hasn’t been stripped of symbols there
are some good ‘hooking’ points such as (WinDbg format for
Python26 binary):

• python26!PyInterpreterState_Head

• python26!PyEval_EvalFrame

• python26!PyObject_Call

• python26!PyObject_CallFunction

What about cases in which symbols have been removed?
The simplest approach – assuming we know the interpreter
version – is to disable the original interpreter binary and
extract signatures from those functions. Load the stripped
interpreted executable and search for the signature within
process memory. Keep in mind, however, that the compiler
used for producing the executable of the custom interpreter
may differ from that used for the offi cial python.org
CPython build.

SUMMARY
As Python gains popularity, advances in anti-analysis and
anti-debugging techniques will evolve faster. The mixture
of bytecode, native code and external dependencies together
with the simple pyc fi le format leaves a lot of room for more
advanced techniques than those described here. It’s not a
question of if we will see such new techniques but when we
will see them.

Figure 4: 64-bit Python interpreter process running under
WinDBG control.

VIRUS BULLETIN www.virusbtn.com

18 JULY 2011

FEATURE
NOT SO RANDOM
Raul Alvarez
Fortinet, Canada

The cat-and-mouse chase between the takedown of botnet
Command and Control (C&C) servers and malware that
incorporates self-updating technology stepped up a gear when
malware started to generate pseudorandom domain names.

A few years ago, botnets updated themselves through static
IP addresses coded deep within them, or domain names
encrypted within their core. But anti-malware researchers
soon became able to determine which IP addresses or
domain names are used by a given piece of malware, thus
leading the way for proactive takedowns, the closure and
blocking of those addresses.

Now, however, malware is capable of creating
pseudorandom domain names that are hard to track. The
malware is able to update itself by employing a form of
Monte Carlo simulation. A Monte Carlo simulation is a
methodology that employs random numbers within a given
set context.

A simple example is as follows:

We can randomly mark a dot on a sheet of paper. As long as
the dot is marked on the paper we can predict the location
of the dot. It is random in the sense that we don’t know the
exact point at which the dot will land, but we do know the
boundaries within which it is restricted.

Using the same concept, malware and its servers can create
random domain names within a given border, thus allowing
it to update itself while producing random domains.

This article will show how Confi cker uses a pseudorandom
generator to produce random domain names while retaining
its ability to communicate with the Command and Control
(C&C) server, and how the machines infected by Confi cker
can generate the same pseudorandom domain names in sync.

CONFICKER
We fi rst saw Confi cker spring into action a couple of
years ago. Exploiting vulnerabilities, propagating through
removable drives and jumping on network shares were
some of the ways in which Confi cker spread itself. This
article focuses on the malware’s pseudorandom generation
of domain names.

IS IT TIME YET?
Before executing its domain name generation routine,
Confi cker checks if the infected machine has an Internet

connection by calling the InternetGetConnectedState()
API. If there is no Internet connectivity, it will sleep for one
minute then check again. It will keep checking until it can
establish a connection. Once it is successful, it will proceed
to check the current date.

In this particular variant, Confi cker checks for a certain
date before proceeding to the subroutine of generating the
domain names. The date checking starts with a call to the
GetSystemTime() API, which returns the current system
date and time expressed in Coordinated Universal Time
(UTC). If the retrieved date falls before January 2009, it
will sleep for three hours by creating a loop of 18 iterations
and sleeping for 10 minutes for each iteration. After three
hours it will be awakened to check the date again.

PLANTING THE SEED

When the right timing has been acquired (i.e. the date is
later than January 2009), Confi cker generates the starting
point by calling the srand() function. The srand() function
accepts one parameter, the seed, to set the starting point for
generating a series of pseudorandom numbers.

To generate the seed, Confi cker XORs all the resulting
values from calls to the following APIs:

GetCurrentThreadId()

GetCurrentProcessId()

QueryPerformanceCounter()

GetTickCount()

The different seed values ensure that the pseudorandom
number generator will generate a different succession
of results in the subsequent calls to the rand() function.
(A call to the rand() function generates a pseudorandom
number.)

THE INITIAL RANDOM VALUE

After setting the starting point of the pseudorandom
generator, the fi rst random number is retrieved by calling
the rand() function and dividing the result by six. The
resulting remainder from the division operation is then
used to select from one of the following search engines:
‘baidu.com’, ‘google.com’, ‘yahoo.com’, ‘msn.com’,
‘ask.com’, and ‘w3.org’ (see Figure 1).

After adding the string ‘http://www’ to the selected search
engine, another subroutine is executed. This subroutine
starts by getting the user agent header string (containing
information about compatibility, the browser, and the
platform name) by calling the ObtainUserAgentString() API
(see Figure 2).

VIRUS BULLETIN www.virusbtn.com

19JULY 2011

The same header string is supplied as a parameter for a
call to the InternetOpenA() API to initialize the use of the
WinINet functions. (The WinINet API enables applications
to access standard Internet protocols, such as FTP and
HTTP [1].)

The selected search engine website, e.g.
‘www.yahoo.com’, is now opened via a call to the
InternetOpenUrlA() API, which is immediately followed by
a call to the HttpQueryInfoA() API with a query info fl ag of
0x20000013 (HTTP_QUERY_FLAG_NUMBER | HTTP_
QUERY_URI). This fl ag identifi es the specifi c location of
the resource. Another call to HttpQueryInfoA() with a fl ag
of 0x00000009 (HTTP_QUERY_DATE) retrieves the date
and time at which the message was originated.

BLIND DATE

The date and time information is the most important
element in the creation of Confi cker’s pseudorandom
domain names. This information is used to determine the
value that synchronizes the domain names generated by
the infected machines and by the malware’s Command and
Control (C&C) server.

To generate the initial value, Confi cker extracts the
date, month and year from the information gathered
by HttpQueryInfoA() and stores them in memory
in SYSTEMTIME format [2]; a quick call to the
SystemTimeToFileTime() API changes the time to
FILETIME format [3].

A series of computations involving the lower and higher
four bytes of FILETIME is performed to generate a 64-bit
value. This serves as the initial value for Confi cker’s
pseudorandom number generator. The malware does not
use the rand() function to generate its domain names. The
pseudorandom number generator is the most important

Figure 1: List of search engines used.

Figure 2: User agent string – Mozilla/4.0 (compatible; MSIE 6.0;
Windows NT 5.1; SV1; .NET CLR 2.0.50727; .NET4.0C; .NET4.0E).

element in order to synchronize the domain names
produced by infected machines in the wild.

LET’S GENERATE

Before we proceed further, let’s look closely
at Confi cker’s pseudorandom generator. The
following are the step by step instructions of the
generator subroutine:

A typical entry on a given subroutine has the
following commands to set up the stack:

55 push ebp

8B EC mov ebp,esp

83 EC 20 sub esp,20h

The initial 64-bit value that we got from our
previous calculations is stored in memory. Let’s call the
upper 32-bit value MemLocHigh and the lower 32-bit value
MemLocLow. The following codes copy the values to the
ECX and EAX registers:

8B 0D 94 9D 3B 00 mov ecx,MemLocLow

A1 90 9D 3B 00 mov eax,MemLocHigh

There are four additional memory storages used to hold
the temporary 64-bit values for the rest of the calculations.
Let’s call them TempMem1, TempMem2, TempMem3
and TempMem4. There are also three memory variables
used for 32-bit computation. Let’s call them memA,
memB and memC. These variables and memory locations
will be used by Confi cker in the series of computations
that follow.

TempMem1 is zeroed out and the contents of MemLocLow
are copied to memA:

83 65 F8 00 and dword ptr [ebp+TempMem1],0

56 push esi

8B D1 mov edx,ecx

57 push edi

89 55 FC mov memA,edx

Confi cker stores the value of ‘MemLocLow AND
7FFFFFFFh’ to memB, and TempMem2 now points to
MemLocHigh.

BF FF FF FF 7F mov edi,7FFFFFFFh

23 D7 and edx,edi

89 45 F0 mov dword ptr [ebp+TempMem2],eax

89 55 F4 mov memB,edx

The following codes introduce the instruction FILD, one of
the assembly instructions in the FPU (Floating-Point Unit)
instruction set. There are eight 80-bit data registers in FPU
that are arranged as a stack: ST0, ST1, ST2, … ST7.

VIRUS BULLETIN www.virusbtn.com

20 JULY 2011

ST0 contains the value at the top of the stack, which is
used by the FPU instructions in their computation. FPU
instructions are mostly ignored or skipped by anti-virus
emulators – malicious programs often use this instruction
as one of their anti-emulator tricks. The resulting values of
these FPU instructions constitute the overall action of the
malware. If the anti-virus software can’t properly process
the FPU instructions, there is a big chance of missing the
actual intent of the malware.

FILD (integer load) is used to convert the TempMem2 value
to the 80-bit extended precision format and push the result
to ST0:

DF 6D F0 fi ld [ebp+TempMem2]

Confi cker ANDs the value of memA with 80000000h:

BE 00 00 00 80 mov esi,80000000h

21 75 FC and memA,esi

It converts the TempMem1 value to the 80-bit format and
pushes the result to ST0, the original value of ST0 is now
pushed down to ST1:

DF 6D F8 fi ld [ebp+TempMem1]

It zeroes out the content of TempMem1 and memA now
contains the result of MemLocLow AND 80000000h:

83 65 F8 00 and dword ptr [ebp+TempMem1],0

89 4D FC mov memA,ecx

21 75 FC and memA,esi

FCHS (change sign) is another FPU instruction that changes
the sign of ST0:

D9 E0 fchs

Followed by the codes that use FADDP, the content of ST0
and ST1 is added and the result is placed into ST1. It also
pops the content of ST0 out of the stack.

DE C1 faddp st(1),st

Confi cker copies MemLocHigh to TempMem, copies
MemLocLow to memC, and saves MemLocLow to the
regular stack:

89 45 E8 mov dword ptr [ebp+TempMem],eax

89 4D EC mov memC,ecx

51 push ecx

FSTP is used to store the value of ST0 to TempMem2 and
pop the ST0 content out of the stack:

DD 5D F0 fstp [ebp+TempMem2]

This is followed by the codes that show that Confi cker keeps
manipulating the values of MemLocHigh and MemLocLow.

51 push ecx

DF 6D E8 fi ld [ebp+TempMem3]

DF 6D F8 fi ld [ebp+TempMem1]

D9 E0 fchs

DE C1 faddp st(1),st

Confi cker stores the value of ST0 to the regular stack and
computes the sine of that value.

DD 1C 24 fstp RegStackPointer

E8 65 94 00 00 call MSVCRT.sin

After getting the sine of ST0, another series of FPU
instructions are executed. At the end of the codes below, it
gets the log of ST0:

83 C4 08 add esp,8

DD 5D E0 fstp [ebp+TempMem4]

83 65 F8 00 and dword ptr [ebp+TempMem1],0

89 55 FC mov memA,edx

21 75 FC and memA,esi

23 D7 and edx,edi

89 45 E8 mov dword ptr [ebp+TempMem3],eax

89 55 EC mov memC,edx

DF 6D E8 fi ld [ebp+TempMem3]

51 push ecx

DF 6D F8 fi ld [ebp+TempMem1]

51 push ecx

D9 E0 fchs

DE C1 faddp st(1),st

DC 45 E0 fadd [ebp+TempMem4]

DC 4D F0 fmul [ebp+TempMem2]

DC 4D F0 fmul [ebp+TempMem2]

DD 5D E0 fstp [ebp+TempMem4]

DD 45 F0 fl d [ebp+TempMem2]

DD 1C 24 fstp RegStackPointer

E8 06 94 00 00 call MSVCRT.log

Finally, Confi cker copies the value of ST0 to MemLocHigh
and MemLocLow using the FSTP instruction. The return
value at register EAX also contains the new MemLocHigh
value.

59 pop ecx

59 pop ecx

5F pop edi

DD 1D 90 9D 3B fstp MemLocHigh

A1 90 9D 3B 00 mov eax,MemLocHigh

5E pop esi

C9 leave

C3 retn

The new values of the MemLocHigh and MemLocLow
memory locations will now be supplied as the 64-bit value

VIRUS BULLETIN www.virusbtn.com

21JULY 2011

for the next execution of the pseudorandom
generator.

WRAPPING UP
Confi cker’s pseudorandom generator accepts
a 64-bit value. It performs a calculation on
this 64-bit value using FPU instructions such
as FILD, FCHS, FADDP, FSTP and FMUL.
These instructions use the special stack
registers ST0, ST1, …, ST7. Confi cker also
uses the mathematical functions sine and log
to produce a different numeric result.

After the long and tedious calculations, the
end result is a new 64-bit value. This new
64-bit value is used as the input parameter for
the next call to the pseudorandom generator.

The lower 32-bit value is stored in the EAX
register, which is essential in the generation
of the domain names.

TIME TO GENERATE DOMAIN
NAMES
Confi cker’s pseudorandom number generator
is an important component in generating
the pseudorandom domain names that
are recognized by all Confi cker-infected
machines (of the same variant) and its C&C servers.

The actual domain name generating routine can be divided
into three blocks of code (see Figure 4).

The fi rst block of code, block A, sets up the counter for
creating 250 (number varies by variant) domain names.
Each domain name is stored in a memory location
generated by a call to the GlobalAlloc() API.

The second block of code, block B, starts by calling
Confi cker’s pseudorandom generator routine. The resulting
EAX value from the routine is converted by the CDQ
instruction to quad word in EDX:EAX via sign extension.
(For example: if EAX = 0 or positive, EDX will be
0000 0000; otherwise if EAX is negative, EDX will be
0xFFFFFFFF.)

PUSH 4, POP ECX AND IDIV ECX divides the value in
EDX:EAX by four, yielding the remainder in EDX. The
possible values for the remainder in EDX range from -3
to 3. Adding eight to the remainder gives us the number of
characters to be generated for the new domain name.

The resulting EAX from a call to the pseudorandom
generator is converted to its absolute value by calling
the labs() API (which calculates the absolute value of a

long integer). The value is now divided by 0x1A (26 in
decimal), to determine which letter of the alphabet has
been selected; adding 0x61 to the value transforms it to
hexadecimal code representing the lower case equivalent
of the letter.

Figure 3: TLD strings.

Figure 4: Blocks of code for the domain name generation.

Figure 5: Random domain names generated by Confi cker (some
letters intentionally erased).

The JMP instruction creates the loop that generates the pre-
computed number of lower case letters for the domain name.

The third block of code, block C, ANDs the value of EAX
from a call to the pseudorandom generator by seven. It
effectively selects the TLD (top-level domain) suffi x from
one of the following: .cc, .cn, .ws, .com, .net, .org, .info and
.biz (see Figure 3). The selected TLD suffi x is now appended
to the domain name generated from block B.

To summarize, in this Confi cker variant, 250 domain names
will be generated. Each domain name consists of lower case
letters of the alphabet that range from fi ve to 11 characters
with the TLD suffi x taken from the eight possible TLD
strings. Note that each call to the pseudorandom generator
produces a new 64-bit value that acts as the new input for
the same routine.

ON AN ENDING NOTE
Pseudorandom generators are increasingly becoming
an integral component of modern malware, not just for
generating random domain names. Given this ability,
Confi cker proves to us that if an anti-virus system is not
capable of emulating FPU instructions, it will be left
behind. Other Confi cker variants have slight variations on
their pseudorandom generator, yet the same idea remains.

Confi cker synchronizes its generated domain names with
other infected machines and C&C servers by using the date
and time taken from a randomly selected search engine
website.

In addition, we have recently seen domain name generation
in the Licat fi le infector, the Srizbi trojan [4], and some
phishing-capable trojans. The common denominator
between Confi cker and these pieces of malware is the use
of the current date and time for synchronization; the use of
random domain names will only be successful if they can
also be generated by their C&C servers.

They are out there. Hundreds of pieces of malware with
domain name generation capability are around, and there
are more to come. The question is: can we catch up?

REFERENCES
[1] Windows Internet. http://msdn.microsoft.com/en-us/

library/aa385331(v=VS.85).aspx.

[2] SYSTEMTIME Structure. http://msdn.microsoft.com/
en-us/library/ms724950(v=vs.85).aspx.

[3] FILETIME Structure. http://msdn.microsoft.com/
en-us/library/ms724284(v=vs.85).aspx.

[4] http://www.virusbtn.com/vba/2007/11/vb200711-
srizbi.

VB2011 BARCELONA
5–7 OCTOBER 2011

Join the VB team in Barcelona, Spain for the
anti-malware event of the year.

What: • Three full days of presentations by
 world-leading experts

 • Rogue AV

 • Botnets

 • Social network threats

 • Mobile malware

 • Mac threats

 • Spam fi ltering

 • Cybercrime

 • Last-minute technical presentations

 • Networking opportunities

 • Full programme at
 www.virusbtn.com

Where: The Hesperia Tower,
 Barcelona, Spain

When: 5–7 October 2011

Price: VB subscriber rate $1795

BOOK ONLINE AT
WWW.VIRUSBTN.COM

2011
BARCELONA

VIRUS BULLETIN www.virusbtn.com

22 JULY 2011

http://msdn.microsoft.com/en-us/library/aa385331(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms724950(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms724284(v=vs.85).aspx
http://www.virusbtn.com/vba/2007/11/vb200711-srizbi
http://www.virusbtn.com/conference/vb2011/index

The Eighth Conference on Detection of Intrusions and Malware
& Vulnerability Assessment (DIMVA 2011) takes place 7–8 July
2011 in Amsterdam, The Netherlands. For details see
http://www.dimva.org/dimva2011/.

Black Hat USA takes place 30 July to 4 August 2011 in Las Vegas,
NV, USA. DEFCON 19 follows the Black Hat event, taking place
4–7 August, also in Las Vegas. For more information see
http://www.blackhat.com/ and http://www.defcon.org/.

The 20th USENIX Security Symposium will be held 10–12
August 2011 in San Francisco, CA, USA. See http://usenix.org/.

The 8th Annual Collaboration, Electronic messaging, Anti-Abuse
and Spam Conference (CEAS 2011) will be held in Perth,
Australia 1–2 September, 2011. See http://ceas2011.debii.edu.au/.

(ISC)2 Security Congress takes place 19–22 September 2011 in
Orlando, FL, USA. The fi rst annual (ISC)2 Security Congress offers
education to all levels of information security professionals, not just
(ISC)2 members. For more information visit http://www.isc2.org/
congress2011.

VB2011 takes place 5–7 October 2011
in Barcelona, Spain. For full programme
details including abstracts for each paper,
and online registration see

http://www.virusbtn.com/conference/vb2011/.

RSA Europe 2011 will be held 11–13 October 2011 in London, UK.
For details see http://www.rsaconference.com/2011/europe/index.htm.

The MAAWG 23rd General Meeting takes place 24–27 October
2011 in Paris, France. See http://www.maawg.org/.

The Hacker Halted Conference takes place 25–27 October 2011
in Miami, Fl, USA. The conference is preceded by the Hacker Halted
Academy (a range of technical training and certifi cation classes)
21–24 October. For more information about both events see
http://www.hackerhalted.com/2011/.

The CSI 2011 Annual Conference will be held 6–11 November
2011 in Washington D.C., USA. See http://www.CSIannual.com/.

The sixth annual APWG eCrime Researchers Summit will be
held 7–9 November 2011 in San Diego, CA, USA. The summit
will bring together academic researchers, security practitioners and
law enforcement to discuss all aspects of electronic crime and ways
to combat it. For more details see http://www.antiphishing.org/
ecrimeresearch/2011/cfp.html.

The 14th AVAR Conference (AVAR2011) and international
festival of IT Security will be held 9–11 November 2011 in Hong
Kong. For details see http://aavar.org/avar2011/.

Ruxcon takes place 19–20 November 2011 in Melbourne,
Australia. The conference is a mixture of live presentations,
activities and demonstrations presented by security experts from the
Aus-Pacifi c region and invited guests from around the world. For
more information see http://www.ruxcon.org.au/.

Takedowncon 2 - Mobile and Wireless Security will be held 2–7
December 2011 in Las Vegas, NV, USA. EC-Council’s new technical
IT security conference series aims to bring industry professionals
together to promote knowledge sharing, collaboration and social
networking. See http://www.takedowncon.com/ for more details.

2011
BARCELONA

 JULY 2011

VIRUS BULLETIN www.virusbtn.com

END NOTES & NEWS

23

ADVISORY BOARD
Pavel Baudis, Alwil Software, Czech Republic

Dr Sarah Gordon, Independent research scientist, USA

Dr John Graham-Cumming, Causata, UK

Shimon Gruper, NovaSpark, Israel

Dmitry Gryaznov, McAfee, USA

Joe Hartmann, Microsoft, USA

Dr Jan Hruska, Sophos, UK

Jeannette Jarvis, Independent researcher, USA

Jakub Kaminski, Microsoft, Australia

Eugene Kaspersky, Kaspersky Lab, Russia

Jimmy Kuo, Microsoft, USA

Costin Raiu, Kaspersky Lab, Russia

Péter Ször, McAfee, USA

Roger Thompson, AVG, USA

Joseph Wells, Independent research scientist, USA

SUBSCRIPTION RATES
Subscription price for Virus Bulletin magazine (including

comparative reviews) for one year (12 issues):

• Single user: $175

• Corporate (turnover < $10 million): $500

• Corporate (turnover < $100 million): $1,000

• Corporate (turnover > $100 million): $2,000

• Bona fi de charities and educational institutions: $175

• Public libraries and government organizations: $500

Corporate rates include a licence for intranet publication.

Subscription price for Virus Bulletin comparative reviews

only for one year (6 VBSpam and 6 VB100 reviews):

• Comparative subscription: $100

See http://www.virusbtn.com/virusbulletin/subscriptions/ for
subscription terms and conditions.

Editorial enquiries, subscription enquiries, orders and payments:

Virus Bulletin Ltd, The Pentagon, Abingdon Science Park, Abingdon,
Oxfordshire OX14 3YP, England

Tel: +44 (0)1235 555139 Fax: +44 (0)1865 543153

Email: editorial@virusbtn.com Web: http://www.virusbtn.com/

No responsibility is assumed by the Publisher for any injury and/or
damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any methods,
products, instructions or ideas contained in the material herein.

This publication has been registered with the Copyright Clearance
Centre Ltd. Consent is given for copying of articles for personal or
internal use, or for personal use of specifi c clients. The consent is
given on the condition that the copier pays through the Centre the
per-copy fee stated below.

VIRUS BULLETIN © 2011 Virus Bulletin Ltd, The Pentagon, Abingdon
Science Park, Abingdon, Oxfordshire OX14 3YP, England. Tel: +44
(0)1235 555139. /2011/$0.00+2.50. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

http://www.dimva.org/dimva2011/
http://www.takedowncon.com/
http://www.ruxcon.org.au/
http://aavar.org/avar2011/
http://www.antiphishing.org/ecrimeresearch/2011/cfp.html
http://www.CSIannual.com/
http://www.hackerhalted.com/2011
mailto:editorial@virusbtn.com
http://www.virusbtn.com
http://www.virusbtn.com/virusbulletin/subscriptions/
http://www.blackhat.com/
http://www.defcon.org/
http://usenix.org/
http://ceas2011.debii.edu.au/
http://www.isc2.org/congress2011
http://www.virusbtn.com/conference/vb2011/
http://www.rsaconference.com/2011/europe/index.htm
http://www.maawg.org/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

