
JUNE 2012

CONTENTS IN THIS ISSUE

IS
S

N
 1

74
9-

70
27

Fighting malware and spam

2 COMMENT

 Botnets in the browser

3 NEWS

 Prevalence data

 Number of mobile malware samples
 approaches 10k

 Malicious attachments peak mid-week

 MALWARE ANALYSES

4 So, enter stage right

5 Andromeda botnet

 TECHNICAL FEATURES

12 Automatically detecting spam at the cloud
 level using text fi ngerprints

15 Malware design strategies for circumventing
 detection and prevention controls – part 2

19 Understanding the domains involved in
 malicious activity on Facebook

21 CONFERENCE REPORT

 EICAR 2012

23 END NOTES & NEWS

HTML5 CROSSROADS
‘... attackers can trivially create a botnet that will run
on any modern OS, on any personal Internet device,
in any location in the world.’ Robert McArdle warns
of the dangers of botnets in the browser.
page 2

BUSY FLIZZY
Some virus writers try to fi nd obscure side effects of
instructions in an attempt to confuse virus analysts.
Sometimes they succeed, and sometimes we already
know about the side effects. The latter is the case
with the technique used in the W32/Flizzy virus.
Peter Ferrie has the details.
page 4

ANDROMEDA RISING
The Andromeda botnet recruits its bots thanks to
four key elements – compromised websites, an
exploit kit, a downloader and a mailing engine
– linked by four sequential phases. Neo Tan takes a
closer look.
page 5

2 JUNE 2012

COMMENT

Editor: Helen Martin

Technical Editor: Morton Swimmer

Test Team Director: John Hawes

Anti-Spam Test Director: Martijn Grooten

Security Test Engineer: Simon Bates

Sales Executive: Allison Sketchley

Web Developer: Paul Hettler

Consulting Editors:
Nick FitzGerald, Independent consultant, NZ
Ian Whalley, Google, USA
Richard Ford, Florida Institute of Technology, USA

BOTNETS IN THE BROWSER
The holder of the title of the fi rst botnet is a matter of
debate, but there are a number of strong contenders from
1999, such as Sub7 and Pretty Park, both of which could
be controlled via an IRC channel. Since then, botnets have
continued to evolve: we have seen IRC superseded by
HTTP and P2P botnets; mobile botnets and Mac botnets
have also arrived on the scene. Now, with the arrival of
HTML5, I believe we are at a crossroads once more.

HTML5 is a set of new standards for the development of
the web. Rather than being a new version in the sense of
traditional software, it is made up of a lot of individual
new features – each with varying support among today’s
browsers. This includes the likes of geolocation, drag
& drop, and a range of upgrades for sharing multimedia
online. Several of these features blur the line between
web application and native application, making it tricky
to determine where local stops and the cloud begins.
Some features are very well supported, while others may
only work in a single browser.

But like any new abilities, these features can be a
double-edged sword. They open up a range of new attack
possibilities, including enhanced cross-site scripting
(XSS), form tampering, port scanning and cross-origin
attacks, to name but a few.

Most alarming, however (and game changing in my
opinion), are the abilities added by HTML5 which
fi nally facilitate browser-based botnets. For a botnet

to be successful on a platform it needs four core
components: it needs to be able to spread, it needs to be
able to receive commands, it needs to have a payload,
and it needs to be persistent.

Spreading malicious JavaScript has never been an issue
– criminals can use purely malicious sites, compromised
sites, XSS and so on. Just look at the Samy MySpace
worm from 2005 to see how effective these can be.

New additions such as WebSockets and Cross Origin
Resource Sharing (CORS) allow for cross-domain,
real-time networking communication – perfect for
C&C control channels and a notable improvement over
AJAX-style polling.

Perhaps the fi nal piece in the puzzle is Web Workers.
Essentially these are background threads which can
execute JavaScript in the background of a page,
while the site’s main content continues to run in
the foreground. When combined with some of the
technologies previously mentioned, Web Workers are
perfect engines for DDoS attacks – and even spamming
using poorly confi gured web forms to act as mail relays.
The attacker’s code will continue to run silently without
interfering with the main page, leaving the victim none
the wiser.

The one area in which botnets in the browser suffer
compared to traditional botnets is that of persistence. In
most cases, closing the browser (or even the infected tab
within the browser) will remove the threat. However,
the life of these botnets can be prolonged using a variety
of approaches such as tabnabbing, clickjacking or just
plain, good old-fashioned social engineering. Botnet
business models can also adapt to work with a more fl uid
botnet where hosts come on and offl ine frequently.

I believe that when all of these factors are combined,
attackers can trivially create a botnet that will run on
any modern OS, on any personal Internet device, in
any location in the world. Browser-based botnets can
be engineered to barely touch the hard disk, making
detection via classic fi le scanning more diffi cult.
Obfuscating JavaScript can easily be engineered to
bypass most network IDSs, and the entire attack takes
place over simple HTTP traffi c – which is allowed
through almost every fi rewall.

I love the web – and ensuring that people have
unrestricted, safe access to it is the reason I became
involved in security in the fi rst place. I have no doubt that
the new features brought about by HTML5 have serious
potential for abuse, but I’m an optimist, and I can’t wait
to watch as those same features are used for good, to
bring the web to the next step in its evolution.

‘... attackers can trivially
create a botnet that
will run on any modern
OS, on any personal
Internet device, in any
location in the world.’
Robert McArdle, Trend Micro

3JUNE 2012

VIRUS BULLETIN www.virusbtn.com

NEWS
PREVALENCE DATA
Due to unforeseen circumstances, the prevalence data due to
be published in this month’s issue was not ready at the time
of going to press. Therefore, for this month only, please see
the online version at http://www.virusbtn.com/Prevalence/,
which will be uploaded as soon as possible. Normal service
will be resumed next month.

NUMBER OF MOBILE MALWARE SAMPLES
APPROACHES 10K

In its latest quarterly report, security fi rm McAfee has
revealed that the number of mobile malware samples in
its database has exceeded 8,000. While this is only about
0.01% of the total number of malware samples in the
company’s database, it is the increase that is most striking:
the number of mobile samples was less than 2,000 at the
beginning of the year. The vast majority of the samples
(almost 7,000) target the Android platform, with Symbian a
distant second.

The report also shows that, after a spike in January, spam
levels have shown a slow decrease. The picture varies
greatly from country to country however, and spam in
some geographic areas actually increased. This was most
noticeable in Germany, where levels in March were higher
than they had been in over a year.

As email has become less popular with cybercriminals, they
have increasingly turned to the web. The number of active
malicious URLs known to McAfee has shown a constant
increase and exceeded 800,000 in March. The company
claims to have prevented a web-based malware attack for
one in eight of its customers.

MALICIOUS ATTACHMENTS PEAK
MID-WEEK

The number of malicious email attachments in circulation
shows a weekly pattern, according to data from security fi rm
FireEye, with peaks on Wednesdays and Thursdays, and
relatively little activity during weekends. The statistics –
which only include attachments that aren’t blocked by spam
fi lters and anti-virus scanners and thus focus on targeted
attacks – also show a decrease in activity during holidays.

Whether this trend is a consequence of those engaged in
such activity following normal working hours, or a deliberate
choice by attackers to increase the likelihood of the
attachments being opened, is not clear. In comparison, many
attacks targeting the masses take place during the weekends,
as attackers seem to believe that with fewer IT and security
staff working, the attacks will take longer to be detected.

VB2012 DALLAS
26–28 SEPTEMBER 2012

Join the VB team in Dallas, TX, USA for the
anti-malware event of the year.

What: • Three full days of presentations by
 world-leading experts

 • Mobile malware

 • Banking trojans

 • OS X malware

 • Social engineering

 • AV testing

 • Spam fi ltering

 • Cybercrime

 • Last-minute technical presentations

 • Networking opportunities

 • Full programme at
 www.virusbtn.com

Where: The Fairmont Dallas hotel,
 Dallas, TX, USA

When: 26–28 September 2012

Price: VB subscriber rate $1795

Early bird rate ($1615.50) available until 15 June

BOOK ONLINE AT
WWW.VIRUSBTN.COM

DALLAS
2012

http://www.virusbtn.com/conference/vb2012
http://www.virusbtn.com/Prevalence

VIRUS BULLETIN www.virusbtn.com

4 JUNE 2012

SO, ENTER STAGE RIGHT
Peter Ferrie
Microsoft, USA

Some virus writers try to fi nd obscure side effects of
instructions in an attempt to confuse virus analysts.
Sometimes they succeed (indeed, sometimes they do so
accidently). Sometimes we already know about the side
effects, but we just don’t talk about them. The latter is the
case with the technique used in the W32/Flizzy virus.

MAKING A HASH OF THINGS
The fi rst generation of the virus begins by fetching the value
in the ImageBaseAddress fi eld of the Process Environment
Block, and applying it to the original entry point value. This
allows the virus to work correctly in processes that have
Address Space Layout Randomization enabled. The virus
continues by setting up a Structured Exception Handler
(SEH) in order to intercept any errors that occur during
infection. The virus retrieves the base address of kernel32.dll
by walking the InMemoryOrderModuleList from the PEB_
LDR_DATA structure in the Process Environment Block. The
address of kernel32.dll is always the second entry on the list.
The virus assumes that the entry is valid and that a PE header
is present – a safe assumption because the SEH that the virus
has registered will intercept any invalid memory access.

The virus resolves the addresses of the bare minimum set
of API functions that it needs for replication: fi nd fi rst/next,
open, map, unmap, close. The virus uses hashes instead of
names, but they are sorted alphabetically according to the
strings they represent. The virus uses a reverse polynomial to
calculate the hash – the return of the magic ‘0xEDB88320’
value, that no-one seems to understand. Since the hashes are
sorted alphabetically, the export table only needs to be parsed
once for all of the APIs. Each API address is placed on the
stack for easy access, but because stacks move downwards in
memory, the addresses end up in reverse order. The virus also
checks that the exports exist by limiting the parsing to the
number of exports in the table. The hash table is terminated
with a single byte whose value is 0x2a (the ‘*’ character).
This is a convenience that allows the fi le mask to follow
immediately in the form of ‘*.exe’, however it also prevents
the use of any API whose hash ends with that value. As with
previous viruses by the same author, Flizzy only uses ANSI
APIs. The result is that some fi les cannot be opened because
of the characters in their names, and thus cannot be infected.

GETTING A HANDLE ON IT
The virus searches in the current directory (only) for objects
whose names end in ‘.exe’. There is a bug in the code in
that it does not close the handle that is used to search the

directory. As a result, a handle is leaked for as long as the
process runs. The search is intended to be restricted to fi les,
but can also include directories, and there is no fi ltering
to distinguish between the two. For each such fi le that is
found, the virus attempts to open it and map an enlarged
view of the contents. There is no attempt to remove the
read-only attribute, so fi les that have this attribute set cannot
be infected. In the case of a directory, the open will fail, and
the map will be empty. The map size is equal to the fi le size
plus a little more than 4KB, to allow the fi le to be infected
immediately if it is acceptable. The value of the size
increase is hard-coded in the virus, which is strange, given
that the size of the encoded form of the virus is only slightly
more than half of that value. Using the post-infection size
during the validation stage allows the virus to avoid having
to close the fi le and re-open it with a larger map later. The
virus assumes that the handle can be used, and then checks
whether the fi le can be infected.

The virus is interested in Portable Executable fi les for the
Intel x86 platform with no appended data. Renamed DLL
fi les are not excluded, nor are fi les that are digitally signed
(at least, not explicitly – most of them will be fi ltered
implicitly, because it is common for the signature to be
placed after the end of the last section, but this is not a
requirement). The subsystem value is restricted to console
mode applications, despite a comment in the source code
which suggests that GUI applications were the intended
target. If the fi le passes all of these checks, then the virus
increases the fi le size by 4KB+1 bytes. The extra byte serves
as the infection marker, because it will appear to be appended
data, and the virus will not attempt to infect the fi le.

The virus increases the virtual and physical sizes of the
last section, and the SizeOfImage, by 4KB. The section
attributes are marked as executable and writable. The virus
constructs a new decoder, and then zeroes the region that
will hold the encoded bytes, even though Windows zeroed
the region automatically when the fi le was mapped.

The virus zeroes the RVA of the Load Confi guration Table in
the data directory. This has the effect of disabling SafeSEH,
but it affects the per-process GlobalFlags settings, among
other things. The virus saves the original entry point in its
body, and then sets the host entry point to point directly to
the virus code. The virus code ends with an instruction to
force an exception to occur, which is used as a common exit
condition. However, it does not recalculate the fi le checksum,
and does not restore the fi le’s date and timestamps either,
making it very easy to see which fi les have been infected.

ENTER HERE
When an infected fi le is executed, the virus decodes itself
using an obscure stack operation. The ‘enter’ instruction is

MALWARE ANALYSIS 1

VIRUS BULLETIN www.virusbtn.com

5JUNE 2012

used most often to allocate space on the stack for variables.
However, it can also be asked to copy previous stack frames
into the new one. Specifi cally, the ebp register value will
be adjusted according to the nesting level. The resulting
pointer will be used to read from a memory location, and
the value at that location will be pushed onto the stack. This
is both an indirect memory push, and one with no obvious
reference to the location. In a fl at memory space, such as
on the Windows platform, the SS and DS registers have the
same value. As a result, the ‘enter’ instruction can be used to
copy data to the stack from anywhere in memory (and can
even be used to perform a memcpy() of up to 31 dwords).
The virus uses this feature to order the bytes of its body
randomly, and creates a table of pointers that correspond to
their original position. The ebp register indexes each of the
table entries in order to restore the body to its original form.

The decoder has some other unusual characteristics, which
increase the size for no good reason. For example, the stack
register value is saved in another register, in order to restore
it later. The reason the virus must save the stack register
is because of a misuse of the ‘enter’ instruction. The virus
requests that the previous stack frame be copied into the new
stack frame, but it also requests that a dword be reserved on
the stack. This dword is not used, and the reservation could
have been avoided. The virus corrects the stack pointer to
discard the reservation and the previous stack pointer, but
does so by using an ‘add’ instruction that is larger than the
two equivalent ‘pop’ instructions (and if no variable space
were reserved, then only one ‘pop’ instruction would have
been needed). The indirect memory value that was pushed
by the ‘enter’ instruction is then popped, leaving the previous
stack frame pointer on the stack. This value could have been
popped, too, and the combination (assuming that the variable
reservation did not exist) would still be shorter than the ‘add’
instruction. Also, by using the ‘pop’ method, the stack pointer
would be balanced after the loop fi nishes, and there would be
no need to save the original stack pointer value at all.

The virus caches the ImageBaseAddress fi eld value in the
decoder, even though its value is not altered and it is not
used until after the decoding has completed. The way in
which the ImageBaseAddress value is used is also strange,
given that the virus writer focuses on size optimizations. The
virus fetches the ImageBaseAddress value and then adds the
original entry point value to it. Instead, the virus could have
moved the original entry point into a register, and then added
the ImageBaseAddress value to it. This would have required
fewer bytes, and avoided the use of another register.

CONCLUSION
This use of the ‘enter’ instruction is an interesting idea, but
the effect is documented (complete with pseudo-code), so
there shouldn’t be any surprises for emulators.

ANDROMEDA BOTNET
Neo Tan
Fortinet, Canada

Andromeda’s bots are served by exploit kits hosted on
compromised websites; social engineering (spam, social
networks etc.) is used to direct victims to such sites. The
bot’s code is obfuscated by an outsourced custom packer,
and the botnet uses fast-fl ux C&C servers and an encrypted
communication protocol.

Unlike many botnets, Andromeda uses its bots actively
to spread. There are four key elements in its propagation
strategy (Figure 1), which are leveraged sequentially.
During this sequence, the bot also delivers its payload
– this may include downloading additional arbitrary
malware, stealing various account details, and spamming.
In this article, we will discuss the four key elements of
Andromeda’s propagation strategy, and describe how they
are linked by the four-stage sequence.

Figure 1: Propagation fl ow chart.

PHASE 1: COMPROMISED WEBSITES
LEAD TO EXPLOIT KIT
The compromised websites that host the exploit kits
involved in Andromeda’s propagation may seem perfectly
innocuous to targeted users. For example, in December
2011, we found a compromised site containing e-cards from
a commonly used online greetings card site:
http://www.123g****ing.com. At that time of year, it
would not be regarded as suspicious for a user to receive a
Christmas e-card from such a site (whether sent by a friend
intentionally, or because their computer was infected, as we
will see in Phase 4 below).

The redirection technique used here is rather common: a
hidden iframe is inserted dynamically into the compromised
website by an obfuscated JavaScript. Figure 2 is a snippet

MALWARE ANALYSIS 2

VIRUS BULLETIN www.virusbtn.com

6 JUNE 2012

of the HTML code of the compromised page, showing one
variant of the obfuscated and encrypted JavaScript.

The obfuscation and encryption vary from
time to time. In the example above, the ‘eval()’
function is re-written into a new function
called ‘e()’ in order to evade detection. After
decryption, the encrypted data ‘n’ becomes a
JavaScript function, which adds an iframe to
the document body. The src fi eld of the iframe
points to an exploit kit server, or a redirect link
that eventually lands at the exploit kit server.

PHASE 2: EXPLOIT KIT
PERFORMS DRIVE-BY INSTALL
The exploit kit used here is the infamous
Blackhole kit [1]. The version used at the time

of writing this article is in JavaScript and is obfuscated
and encrypted dynamically (server-side polymorphism
is a common technique among today’s exploit kits). The
various exploits served by the kit are constantly updated
by its authors. The kit is sold on the underground market
with quite a fl exible licensing scheme and also has a rental
service, allowing users to rent the exploit kit servers for a
period of time. Altogether, these features make Blackhole
one of the most popular exploit kits at present.

Figure 3 is a screenshot of the HTTP GET stream from the
victim PC to the exploit kit server.

The hex value after ‘page=’ is probably an affi liate ID,
suggesting that the gang behind Andromeda has established
an affi liate programme, whereby partners redirecting
innocent users to the exploit kits are paid based on how
much ‘fresh meat’ they bring.

The server replies with an obfuscated JavaScript
implementing the exploits.

In the version we analysed, the kit contained four exploits
targeting the following vulnerabilities:

1. Java Runtime Environment vulnerability:
CVE-2011-3544

2. Help Center URL Validation vulnerability:
CVE-2010-1885

3. Adobe Flash Player vulnerability: CVE-2011-0611

4. Adobe Reader vulnerability: CVE-2010-0188.

Following the success of any of the above exploits, a
downloader is dropped on the victim’s machine and run
either directly, or via an intermediary shellcode. Figure 4
shows an example of such a shellcode.

The shellcode contains a download routine, which is
encrypted using simple XOR. After decryption, it resolves
and calls ntdll.URLDownloadToFileA in order to download
its payload, save it to a temp fi le, and run it.

Figure 2: Obfuscated and encrypted JavaScript.

Figure 3: HTTP GET stream.

Figure 4: The shellcode.

VIRUS BULLETIN www.virusbtn.com

7JUNE 2012

For more information on the Blackhole exploit kit, please
refer to [1].

PHASE 3: DOWNLOADER RETRIEVES
SPAM ENGINE
The purpose of the downloader installed in Phase 2 is
threefold:

• To inject a Windows system executable

• To send logs to the C&C server

• To download the spam engine (this will be detailed in
Phase 4).

The downloader in this version has four layers of packing
in the following order: UPX, simple XOR, another UPX
and then a custom packer. (We have also seen variants
of this custom packer being used by other downloaders.)
Its fi rst decryption routine is described by the following
pseudo code:

for(i = length_of_code-1; i>=0; i--;)

{

 code[i] += a_hard_coded_number;

 a_hard_coded_number += modifi er;

}

Then it goes into the dynamically allocated memory to start
the second decryption routine. The meaningful opcodes are
buried amongst many jumps and junk calls.

Once fully decrypted, the downloader uses the
SendMessageCallbackW API to set a callback function,
which is the injection routine. IsWow64Process is called to
determine which process is to be injected: wuauclt.exe or
svchost.exe. In this example1, because our test environment
is a Windows XP 32-bit machine, the target is %System32%\
wuauclt.exe2.

The goal of this injection is to map the piece of code shown
in Figure 5 into the target process in memory and call it
from the entry point of the process.

The opcode is the stub which will decrypt and execute
the encrypted code. During the injection, it sets the
environment variable ‘src’ to be the path of the original
downloader fi le. Later on, it will be used for dropping fi les
and self-deletion.

The injection method used here is relatively uncommon.
It does not employ any memory-writing calls such as
WriteProcessMemory or ZwWriteVirtualMemory.
Basically, it makes use of multiple ZwMapViewOfSection
and ZwUnmapViewOfSection calls to copy the viral
code into the memory space of the target process, then it
modifi es the entry opcode to point to it. The steps in detail
are as follows:

1. The addresses of ZwCreateSection,
ZwMapViewOfSection and
ZwUnmapViewOfSection are resolved from hash
codes, each address is decreased by one, then they
are stored for future use. Since the byte immediately
before the start of these API functions is 0x90
(nop), calling address-1 is the same as calling the
API function’s address. However, tracers won’t
notice these APIs being called. So, for example,
in Figure 6, VA:0x7C92D5003 is the address of
the ZwMapViewOfSection API, but the address
0x7C92D4FF is stored and called.

Figure 6: VA:0x7C92D500 is the beginning address of the
ZwMapViewOfSection API.

2. CreateFileA wuauclt.exe is called with parameter
GENERIC_READ, then ReadFile is called but only
0x1000 bytes of the fi le are read, because initially,

1 Unless otherwise specifi ed, our analysis of the downloader is based on
a sample with md5: ce7b86a201f32b115577551c61a28508.
2 In Windows XP, the default full path of the fi le is C:\Windows\
System32\wuauclt.exe.
3 VA: virtual address.Figure 5: Code to be injected is prepared in memory.

VIRUS BULLETIN www.virusbtn.com

8 JUNE 2012

Figure 7: Memory fromBaseAddress 0xA0000 in process
wuauclt.exe

the downloader only wants to know the image size.
It gets the image size from the PE header. Then it
calls VirtualAlloc to allocate a dynamic memory
with that size, reads the wuauclt.exe fi le again, and
copies the whole image into the newly allocated
memory.

3. The ZwCreateSection API is called, with the
MaximumSize parameter set to the total size of the
opcode and the encrypted code. Then it calls the
ZwMapViewOfSection API with the ProcessHandle
parameter set to the current process. This call
also gets the base address of this mapped view in
memory. To make it simple to remember, let’s say
it is stored in the baseAddressInject variable. Both
the opcode and the encrypted code are copied to
the memory space pointed to by baseAddressInject
to form the trunk of memory shown in Figure 5.
Then ZwUnmapViewOfSection is called, with the
ProcessHandle parameter set to the current process
and the BaseAddress set to baseAddressInject.
This action will not wipe out the injecting code
that was just prepared in memory. The code stays
within the memory space of the current process,
although no one can view it. This unmapping is
a crucial step, because without it, any following
ZwMapViewOfSection calls will result in the
STATUS_CONFLICTING_ADDRESSES error.

4. As in a common injection routine, a suspended
process of wuauclt.exe is created by a
CreateProcess call.

5. ZwMapViewOfSection is called, with the
SectionHandle parameter set to the section created in
step 3, and the ProcessHandle parameter set to process
wuauclt.exe. The BaseAddress of this view is stored in

a variable. Let’s call the variable baseAddressWuauclt.
Now the malicious code prepared in step 3 is mapped
into the wuauclt.exe process and baseAddressWuauclt
points to the beginning of the code in the memory
space. Figure 7 shows that the injecting code is now
mapped into the memory space of the wuauclt.exe
process. Notice that e8 15 00 00 is the operation call
to the decryption routine.

6. The rest is just about redirecting the
wuauclt.exe process to baseAddressWuauclt from
the entry point. Another section is created using
ZwCreateSection, and ZwMapViewOfSection is
called again with the ProcessHandle parameter set
to the current process, and the BaseAddress of this
view is stored to a variable. Let’s name this variable
baseAddressInject2. Then GetThreadContext is
called to get the thread context of the suspended
wuauclt.exe process. The EAX register value (+0xB
in CONTEXT structure) is obtained from the context
structure, which is the VA of the entry point. Then the
ImageBase address of the wuauclt.exe process can
be calculated by using this VA minus the entry point
raw offset, which can be obtained easily from the
PE header.

7. The entire wuauclt.exe image is copied to address
baseAddressInject2, which is in the memory space
of the current process. Then the downloader goes to
baseAddressInject2+offsetToEntryPoint to patch the
entry point code to be 68 |baseAddressWuauclt| C3.
In assembly code, this is:

 push baseAddressWuauclt

 retn

8. ZwUnmapViewOfSection is called with the
ProcessHandle parameter set to wuauclt.exe and
BaseAddress set to ImageBase, which was obtained
in step 6. This action unmaps the original
wuauclt.exe image from the wuauclt.exe process.

9. ZwUnmapViewOfSection is called with the
ProcessHandle parameter set to the current process
and BaseAddress set to baseAddressInject2. This
action unmaps the entry-point-modifi ed wuauclt.exe
image from the current process.

10. Finally, ZwMapViewOfSection is called with the
SectionHandle parameter set to the section created
in step 6, ProcessHandle set to wuauclt.exe and
BaseAddress set to baseAddressInject2. This action
swaps the modifi ed wuauclt.exe image to the
suspended wuauclt.exe process. A ResumeThread
call will run the injected process from the patched
entry point.

VIRUS BULLETIN www.virusbtn.com

9JUNE 2012

All of the effort described above is just for injecting a little
DLL into a system process. Let’s have a look at what this
downloader’s payload is.

As usual, it begins with collecting information about the
infected PC. It gets VolumeSerialNumber and uses it as
MutexName. Using the ‘src’ environment variable, it
drops itself to a %Temp%\ directory with a random name
generated using GetTickCount’s return value as seeds. It
then deletes the original and creates an auto run entry in the
registry.

Figure 8: Pre-key highlighted.

Figure 9: A piece of KSA in RC4.

Next, it prepares a message which will be sent to the C&C
server in the following format:

id:%lu|bid:%lu|bv:%lu|sv:%lu|la:%lu

• ‘id’ is the VolumeSerialNumber, which is also used as
an encryption key in communications.

• ‘bid’ is some counter for the communication, starting
from one.

• ‘bv’ is probably the build version of this downloader,
hard coded.

• ‘sv’ is the current OS version, calculated from
GetVersionEx call ouputs with the format:
MajorVersion<<8 + MinorVersion.

• ‘la’ is the SocketName, byte swapped.

The message will be encrypted before sending. Figure 8
shows the hard-coded pre-key used by the fi rst encryption
layer. It is probably a hash code of a string. In some older
versions, the pre-key was ‘blablablaandromeda’, which is
where the botnet’s name came from. Moreover, the C&C
servers use fast-fl ux techniques to switch their IP from time
to time.

The fi rst encryption layer is RC4 with the key-scheduling
algorithm obfuscated. Figure 9 shows the early stage of the
key-scheduling algorithm (KSA). As you can see in the fi rst
loop, it initializes the array ‘S’ backwards.

The second encryption layer uses the CryptBinaryToString
function to encode the hex value to a base64 string, so that
it can be transferred as part of the HTTP Get message body.
It tries to send the encrypted message to three different
URLs. These URLs are hard-coded in the DLL body, as
shown in Figure 10.

Figure 10: Hard-coded URLs.

It waits until any of the above servers replies. The fi rst four
bytes of the response message are the checksum of the
decrypted message. The decryption uses RC4 again with the
VolumeSerialNumber as pre-key. Then there is a function
to calculate the checksum of the decrypted message and
compare it with the one sent by the server.

After decryption, one kind of response is shown in
Figure 11.

Figure 11: C&C server command, decrypted.

VIRUS BULLETIN www.virusbtn.com

10 JUNE 2012

Figure 12: Initial communication.

Figure 13: C&C response decrypted.

The fi rst dword (0x0000 0009) is used as a multiplier to
a hard-coded number to get the new time interval for this
communication thread. The following byte (0x01) decides
which task the downloader is going to perform. The tasks
are:

(1) download and execute

(2) redirect to another C&C server

(3) download, execute and modify registry

(4) modify registry.

It will send a log report to the C&C server after whichever
job is done. Task (1) is the main purpose of this downloader,
to download and run the spam engine.

Once a task is completed, a string is created with the
format: ‘id:%lu|tid:%lu|result:%lu’. The string is encrypted
with RC4 using the pre-key shown in Figure 8. The ‘id’ is
the VolumeSerialNumber; the ‘tid’ is the last dword (0x0000
0009) before the URL in Figure 11, which is probably the
version of the downloaded fi le; and the ‘result’ is the Thread
Handle number of the downloaded and executed fi le, if
there is one.

PHASE 4: SPAM ENGINE
Besides sending spam, the spam engine also has the ability
to search the victim’s computer and harvest various fi les
containing profi le information. The applications it targets in
this example4 include:

• The Bat! email client

• ICQ

• Miranda

• RQ

• Trillian

• Ghisler Total Commander

• RimArts email client

• MS Outlook

• CuteFTP

• Edailer

• Far Manager

• WS_FTP

• Opera

• Mozilla applications

Most of these applications are either FTP or email clients.

4 Sample md5: 1a4f7f5205c2fa133131f6f57df6f40b.

The more FTP accounts stolen, the more websites can be
compromised. And the more email contacts and accounts
are stolen, the more sophisticated the spam email can be
made. Therefore, the information it harvests in this phase
is intended to facilitate the botnet’s propagation (see
Phase 1).

Another payload in this phase concerns spamming. At
fi rst, the spam engine drops itself to %Application Data%\
fi rewall\system.exe and a confi guration fi le to %System%\
dbs.dat. The confi guration fi le mainly stores the encrypted
C&C server addresses.

Initially, after installing itself on the victim’s PC, the spam
engine will try to contact the C&C server. Figure 12 shows
an example of the communication. The host and the Get
requests are hard-coded in the engine’s body. The message
received is encrypted with two layers.

The fi rst encryption layer is a custom RC4 without the
KSA. The key is already pre-scheduled and stored in the
engine’s body. The intention behind this may be to conceal
the encryption algorithm and perhaps to gain a little
improvement in performance. The second encryption layer
is a side-by-side byte-XOR, starting from the bottom of the
code, and then the fi rst code XOR with 0xFF.

VIRUS BULLETIN www.virusbtn.com

11JUNE 2012

After decryption, we can see that the message is a table
containing URLs of the backup C&C servers and spam
template servers. The dword value circled in red specifi es
the server type (0xE0 means the C&C server and 0xE2
means the spam template server), followed by one byte
specifying the URL length and the URL itself. These
pieces of information will be encrypted and stored in the
confi guration fi le dbs.dat for future use.

The next task is to send the stolen information to the
C&C servers. The stolen information is encrypted using
the same method as above, and the malware tries to send
it to the servers from the list received in the previous
communication.

Then it sends a request to the spam template servers to
obtain the latest spam template. The message received is
also encrypted by the same method. Figure 14 shows part of
the decrypted email template.

Figure 14: Part of the email template.

The template fi le size is about 70KB, and it contains
two email templates. One uses The Bat! (the full format
is: ‘The Bat! (v4.%RND_DIGIT.%RND_DIGIT[2])
UNREG’, with the percentage sign and capitals together
being random variables) as the X-Mailer string, and the
other uses Microsoft Outlook Express 6.00.2800.1106.
The email template can be used to compose both the
SMTP header and the message body. There is also a large

database of words, domains, people’s names, mail servers,
compromised website URLs and email addresses for the
spammer to choose randomly to fi ll in the variables in the
templates.

The email addresses are probably contacts harvested by
the spammers. The chances that they are active email
addresses are very high, therefore they can be used as
either the senders or the receivers. The templates from
the samples we looked at could compose deceptive
emails about e-greeting cards or free porn videos,
or advertisement emails for dating site registrations
(for advertisement purposes, the dating site itself was
legitimate and harmless). Thanks to this fl exibility, the
content of the spam messages can be crafted to be very
up to date. For example, in mid-December 2011, it would
be very tempting for many users to open an email that
appeared to contain a link to a secret video of Muammar
Gaddafi ’s death.

After creating each email with both the SMTP header and
the message body, the spamming engine tries to send it by
using the standard SMTP protocol.

CONCLUSION

The Andromeda botnet recruits its bots thanks to four
key elements: compromised websites, an exploit kit, a
downloader and a mailing engine. These are linked by four
phases, occurring sequentially. The fi nal phase not only
ties back to the fi rst, but also facilitates it by stealing user
information such as email contacts, messenger accounts and
FTP accounts.

At the time of writing this paper, the mailing engine was
only spamming emails advertising a legitimate dating
website – suggesting that the botnet had suspended the
active recruitment of more bots. The downloaders were only
downloading the mailing engines. However, it still has the
capacity to download and run arbitrary fi les – which may be
even more harmful and harder to detect.

Because the four phases occur sequentially, breaking any
phase can break the circle. The weakest link may be the fi rst
phase. Being careful to avoid opening suspicious emails
and using up-to-date web browsers should keep most users
safely out of the reach of Andromeda’s chains.

REFERENCES

[1] Howard, F. Exploring the Blackhole Exploit Kit.
Sophos Naked Security blog.
http://nakedsecurity.sophos.com/exploring-the-
blackhole-exploit-kit/.

http://nakedsecurity.sophos.com/exploring-the-blackhole-exploit-kit

VIRUS BULLETIN www.virusbtn.com

12 JUNE 2012

AUTOMATICALLY DETECTING
SPAM AT THE CLOUD LEVEL
USING TEXT FINGERPRINTS
Marius Nicolae Tibeica and Adrian Toma
Bitdefender, Romania

Due to increases in spam volume, as well as language
diversity, content-based anti-spam technologies have
decreased in effi ciency. Alternative methods of similarity/
outbreak detection are much needed, and by taking advantage
of technological advances in the cloud infrastructure, we can
reduce the impact on clients’ resources.

To address the similarity problem, we propose a
fi ngerprinting algorithm that maps similar text inputs to
similar signatures. There are two steps: the fi rst involves
creating an element of the fi ngerprint from each word or
group of words, chosen by certain heuristics. The size of the
text on which the fi ngerprint is created is very important:
too little information can generate false positives, and too
much information can make the matching process costly.
Our approach is either to zoom in (increasing the number
of fi ngerprint elements each word generates) if the text is
too short, or zoom out (gradually reducing the length by
eliminating certain groups) if the text is too long. We have
tested the method using a clean stream of spam to train a
matching fi lter with the Levenshtein distance as an indicator
of similarity.

1. INTRODUCTION
Spammers constantly adapt their techniques in order to
avoid detection fi lters. Signature-based anti-spam fi lters
require frequent updates in order to remain effective,
especially given the speed with which spam changes.
Bayesian fi lters need constant training and can also miss
spam with malicious attachments. IP address blocking is
also problematic, as most spammers now rapidly change
their IP addresses. Furthermore, a legitimate server that
has been compromised for a short period of time cannot
be blacklisted, as it also sends legitimate email messages.
Spammers try to decrease the effi ciency of URI blacklisting
by registering a large number of domains or by using
URL-shortening services. The need for an automatic
similarity/outbreak detection method is clear.

The increasing popularity of portable devices and recent
technological advances in the cloud infrastructure make
moving processing away from the client an obvious choice
– both to reduce the impact on the client’s resources and to
signifi cantly decrease update times. This shift in perspective
calls for the use of a reliable fi ngerprint generation algorithm.

2. THE FINGERPRINT
There is an existing algorithm that generates fi ngerprints:
context-triggered piecewise hashing (also known as fuzzy
hashing) [1]. Unfortunately, on text of small dimensions,
the length of the signature generated by the algorithm is too
small and is unusable. This represents a big portion of spam
messages, and these are also the hardest to detect using
other content-based fi lters.

Our approach to creating a fi ngerprint for text is to focus on
the actual words contained in the message, as this gives a
good separation of entities in most languages. By generating
a character from each word we obtain a basic fi ngerprint, but
this has several limitations, which we address as follows.

2.1 The basic fi ngerprint
The creation of the basic fi ngerprint involves several steps:

1. The input string is separated into different entities by
delimiters1. These entities can be considered words.

2. Entities larger than a certain threshold value can be
further separated.

3. We apply a hash function to each entity.

4. A base64-encoded value of the six least signifi cant
bits of the hash is appended to the fi nal fi ngerprint.

This will produce a fi ngerprint with a length equal to the
number of entities found. If a fi ngerprint with a length within
a certain range is needed, further processing is required.

2.2 The zoom in
Too little information from a fi ngerprint can generate
false positives. To avoid this we can increase precision
by gradually increasing the number of encoded values
each hash appends to the fi nal fi ngerprint. The number of
encoded values represents the zoom level.

In this case, a 30-bit hash can offer up to fi ve levels of
zooming (for a 64-letter alphabet), and the possibility to
increase the length of the fi ngerprints up to fi ve times.

2.3 The zoom out
Too much information can make the matching process
costly, especially when using a time-consuming2 edit
distance. To decrease the length of the fi ngerprint, we try
to eliminate some of the entities in a way that gives two
similar texts similar fi ngerprints:

1 The delimiters that we chose are: {‘ ’, ‘\n’, ‘\t’, ‘\r’, ‘\0’, ‘.’, ‘,’, ‘:’, ‘;’,
‘(‘,’)’, ‘{‘,’}’, ‘[‘,’]’, ‘\\’, ‘/’, ‘^’, ‘\”’, ‘!’, ‘?’, ‘`’, ‘\’’, ‘+’, ‘*’, ‘^’, ‘$’,
‘|’, ‘?’, ‘”’}
2 The Levenshtein edit distance [1] is found in O(mn) time (where m
and n are the length of the measured strings).

TECHNICAL FEATURE 1

VIRUS BULLETIN www.virusbtn.com

13JUNE 2012

1. To avoid losing too much information, we create
new hashes from groups of entities.

2. For an X zoom-out level, a base64-encoded value of
the six least signifi cant bits of the hash is appended
to the fi nal fi ngerprint if hash % X = 0.

There is no way of fi nding the length of a fi ngerprint with a
certain zoom-out level without calculating it, so zooming in
will be done gradually until an acceptable length is found.

2.4 Choosing the hash function
We checked several hash functions to see which offered the
least number of collisions on words from emails in various
languages. The best choice was RSHash.

Hash function Collisions
32 bits

Collisions
30 bits

RSHash 0 4
BKDRHash 1 6
SDBMHash 2 7
OneAtATimeHash 2 6
APHash 4 6
FNVHash 7 10
FNV1aHash 7 10
JSHash 266 277
DJBHash 266 268
DEKHash 435 720
PJWHash 1687 1687
ELFHash 1687 1687
BPHash 61907 70909

Table 1: Analysis of hash functions on over 122,000 words
from emails in various languages.

2.5 Example of fi ngerprint generation
Tables 2 and 3 show how fi ngerprints with different zoom
levels are generated from the text:

‘High end designer watch and handbag replica sale.
Compare our price on a handful of our high end replicas!’

The basic and zoom-in fi ngerprints are generated from the
same hashes, with the following results:

• Basic fi ngerprint: I171Z5KrHYNPhOHYo1p

• Fingerprint with 2x zoom in: EIM1P711nZo54KWrUH
4YUN3PAhLO3H4YVoM1Up

• Fingerprint with 4x zoom in:
lE5ImMU1IPa701c1jnDZaoL5z4eKOWCrcU1Hk4LY7
UYNX3vPAAAh4LpOX3vHk4LY/VaomMU1KUCp

The zoom-out fi ngerprints are:

• 1/2 x 4cu8Ks0+2G

Entities Hash in hex
Basic

fi ngerprint
2x zoom in
fi ngerprint

4x zoom in
fi ngerprint

high 25c4f948 I EI lE5I

end 260c1435 1 M1 mMU1

designer 84f5afb 7 P7 IPa7

watch 34f5dc75 1 11 01c1

and 2367c3d9 Z nZ jnDZ

handbag 1aa88b79 4 o5 aoL5

replica 33381eca K 4K z4eK

sale e96c2eb r Wr OWCr

compare 1c947587 H UH cU1H

our 24b80bd8 Y 4Y k4LY

price 3b54d80d N UN 7UYN

on 1777af4f P 3P X3vP

a 61 h Ah AAAh

handful 380be94e O LO 4LpO

of 1777af47 H 3H X3vH

our 24b80bd8 Y 4Y k4LY

high 3f155a68 o Vo /Vao

end 260c1435 1 M1 mMU1

replicas ad4c229 p Up KUCp

Table 2: Basic fi ngerprint and zooming in example.

Entity groups Hash in hex 1/2x
zoom
out

1/3x
zoom
out

1/4x
zoom
out

1/5x
zoom
out

1/6x
zoom
out

high end designer 54206878 4 4 4

end designer watch 63514ba5 l l

designer watch and 60acfb49

watch and handbag 73062bc7 H

and handbag replica 71486e1c c c

handbag replica sale 5c776d2e u u u

replica sale compare 5e63573c 8 8 8

sale compare our 4fe3444a K

compare our price 7ca1596c s s

our price on 77849334 0 0 0 0 0

price on a 52cc87bd 9

on a handful 4f8398fe +

a handful of 4f8398f6 2

handful of our 743ba46d

of our high 7b451587 H

our high end 89d97a75

high end replicas 6ff630c6 G G G

Table 3: Zooming out example.

VIRUS BULLETIN www.virusbtn.com

14 JUNE 2012

• 1/3 x lHu0HG

• 1/4 x 4c8s0

• 1/5 x 4l809

• 1/6 x u0G

2.6 Zoom levels on spam & legitimate emails
We analysed the spam fl ux and legitimate email messages
over the course of two weeks. Setting a desired fi ngerprint
length of 127 to 256 characters, we obtained the following
results:

Figure 1: Zoom levels on spam emails.

The cumulative results are:

• Legitimate emails zoom in: 21.84%

• Legitimate emails no zoom: 19.88%

• Legitimate emails zoom out: 57.23%

• Legitimate emails no suitable text: 0.99%

• Spam emails zoom in: 36.26%

• Spam emails no zoom: 20.82%

• Spam emails zoom out: 42.15%

• Spam emails no suitable text: 0.72%

3. COMPARING FINGERPRINTS
Two fi ngerprints can be compared to determine whether the
texts from which they were derived are similar.

Because the method of creating a fi ngerprint differs with
each zoom level, only those with an identical zoom level
can be compared. The examination looks at the zoom level
and computes a Levenshtein distance, which then is scaled
to produce a match score. For two fi ngerprints, f

1
 and f

2
, the

score is:

By choosing a threshold T, in the range from 0 through 1, (1
meaning that a perfect match is required), we can say that
the two fi ngerprints match if T ≤ S (f

1
, f

2
).

4. DETECTION AND FP RATES

We took a continuous stream of spam (15 hours, 865,000
emails) and divided it into 10-minute intervals. For a
certain interval, we trained the fi lter with all the emails
from the previous intervals and found a detection rate
with a similarity threshold of 0.75 for both fuzzy hashing
(with variable block size) and the proposed fi ngerprinting
algorithm. The results are presented in Figure 2.

We then trained the fi lters with all the spam emails and
ran a check on a corpus of 500,000 legitimate emails and
newsletters. No false positives were registered.

The fi ngerprinting technology was also used in between
offi cial tests in VBSpam comparative testing and the zero
false-positive rate was confi rmed.

5. FURTHER STUDY AND LIMITATIONS

The fi ngerprint is based on content, especially words. As
long as an email message has no words (including emails
that only contain images or URLs) a fi ngerprint cannot be
generated.

6. REFERENCES
[1] Levenshtein, V. I. Binary codes capable of

correcting deletions, insertions and reversals.
Doklady Akademii Nauk SSSR, 4, 163, 845–848,
1965.

[2] Kornblum, J. Identifying almost identical fi les
using context triggered piecewise hashing. DFRWS
conference 2006.

Figure 2: Detection rates on spam emails.

VIRUS BULLETIN www.virusbtn.com

15JUNE 2012

MALWARE DESIGN STRATEGIES
FOR CIRCUMVENTING
DETECTION AND PREVENTION
CONTROLS – PART 2
Aditya K. Sood and Richard J. Enbody
Michigan State University, USA

Anti-virus scanners have shown tremendous advances
with the passage of time. There have been signifi cant
improvements in the tactics used by anti-virus developers
to detect malicious code. However, malware writers are still
running upfront. Let’s look at some of the methods used by
anti-virus engines to detect malicious code:

• The most common technique used by anti-virus
engines is pattern matching and string detection.
When a set of malware samples are analysed, a
signature is generated using information extracted
from the samples. The signature is usually built using
byte code (memory data) that maps to a string that is
unique to the malware. Wildcards are also deployed
for detecting the different variants of malicious code.
The signatures are stored in databases that are updated
regularly. Additionally, cryptographic checksums
are used for large signatures to produce a one-way
unique hash for detecting complex malicious code.
Implementation of cryptographic checksums makes
the process faster and more accurate than using
generic signatures.

• Code emulation is a technique in which malicious
code is run in a virtual environment in order to detect
its behaviour and infection tactics. Primarily, code
emulation is used to detect encrypted and polymorphic
malware by tracing different patterns in the memory.
It is also easy to implement code optimization in
emulators, making the process faster by removing junk
code (code that has no relevance during analysis) from
the malicious program.

• Heuristic analysis is used by anti-virus engines to make
an educated guess about unknown malware based on
a set of rules which determine whether a fi le meets
any suspicious criteria. Heuristic analysis can harness
the power of deployed signatures and code emulation
strategies to detect unknown families of malware.
It can be static in nature, utilizing fi le formats and
dependencies to characterize a program’s functionalities.
Dynamic heuristics requires code emulation with
self-learning capabilities. While heuristics-based
detection is prone to false positives, it is valuable for
enhancing the anti-virus engine’s capabilities.

Generally, the majority of scanners use these techniques.
More details about the working of scanning engines can be
found at [1]. Many researchers have done a good amount of
work in analysing and discussing obfuscation, anti-debugging
and anti-emulation techniques. However, to continue our
discussion we will dissect these principles again.

OBFUSCATION TACTICS
Malware writers employ a range of obfuscation tactics to
make their code harder to analyse.

• Embedding garbage code: To make code more
complex, malware writers add garbage code to their
programs. Garbage code is also known as ‘dead code’.
Generally, such code is a set of instructions that do
not modify the state or execution of the program, but
which make the code complex when used with other
obfuscation techniques. For example, NOP instructions
are used heavily for this purpose. The garbage code can
also be a set of subroutines. However, most present-
day anti-virus engines have the capability to remove
ineffective instructions from the code during analysis.

• Subroutine randomization: Malware writers also use
a technique of randomizing subroutines to reorder
the fl ow of instructions in the code. Typically, instead
of placing subroutines in a hierarchical manner, they
are placed randomly in different locations within the
program. It is possible to have a number of variants of
the same code based on subroutine randomization. This
is possible because subroutines are individual pieces of
program code that are independent in nature and can be
imported during execution.

• Code substitution: Code substitution is an obfuscation
technique in which certain instructions are substituted
with equivalent ones. This can change the structure
of code substantially and make it more complex to
understand. Typically, this technique is used to subvert
the pattern-based scanning tactics of anti-virus engines.

• Obscuring entry points: Generally, malware writers
manipulate the entry point of the infected program
(which is present in the code section) and relocate
it to the malicious code. However, this can easily be
detected as the entry point is present outside of the
code section. To avoid detection, malware writers use
Entry Point Obfuscation (EPO) techniques in which
malware does not gain control directly from the system
program but injects a JMP/CALL routine to subvert the
execution. There are many variants of EPO.

• Register shuffl ing: Register shuffl ing is another
technique used by malware writers to transform the
layout of instructions in the code. Registers are shuffl ed

TECHNICAL FEATURE 2

VIRUS BULLETIN www.virusbtn.com

16 JUNE 2012

so that the code pattern is changed, but the code is
executed in the correct manner. This is primarily used
to mask real code, making its interpretation complex.

• Code encryption: Polymorphic viruses encrypt their
code differently with each infection (or each generation
of infections) in order to make it diffi cult for anti-virus
engines to detect them. Emulation-based malware
detection came about as a result of the fact that
polymorphic malware decrypts itself during run time
to trigger infection. This means that, at some point,
polymorphic encryption/decryption has to produce
the real code in memory, and that’s where emulation
succeeds. To thwart this, malware writers developed
metamorphic malware in which the code itself mutates
with every infection. Figure 1 shows the execution
pattern of a metamorphic virus:

Figure 1: Metamorphic virus execution fl ow.

 Both the decryption routine and the decrypted code are
different in every generation of metamorphic malware,
whereas in polymorphic malware the original source
code does not change. Different types of encryption
have been discussed in [2].

ANTI-TRAFFIC ANALYSIS
Since the advent of Zeus, several classes of malware have
been using anti-traffi c-analysis code. This allows the
malware to detect the presence of traffi c analysis systems and
kill them before it starts communicating with the Command
& Control (C&C) server. Typically, on Windows Wireshark
and Microsoft’s Network Monitor are used to monitor the
traffi c going in and out of the system. There are many ways
to trigger anti-traffi c code in the Windows operating system.
Malware writers generally prefer to implement anti-traffi c

DWORD main_pid = // Get the Process ID of the Traffi c
Monitoring Program [Wireshark |]

PROCESSENTRY32 proc_en;

memset(&proc_pe, 0, sizeof(PROCESSENTRY32));

proc_en.dwSize = sizeof(PROCESSENTRY32);

HANDLE handle_snap = CreateToolhelp32Snapshot(TH32CS_
SNAPPROCESS, 0);

if (Process32First(handle_snap, &proc_en))

{

 BOOL continue = TRUE;

 while (continue) {

 if (proc_en.th32ParentProcessID == main_pid)

 {

 HANDLE h_child_proc = OpenProcess(PROCESS_
ALL_ACCESS, FALSE, proc_en.th32ProcessID);

 if (h_child_proc)

 {

 TerminateProcess(h_child_proc, 1);

 CloseHandle(h_child_proc);

 }

 }

 continue = ::Process32Next(handle_snap,
&proc_en); }

 HANDLE h_proc = ::OpenProcess(PROCESS_ALL_ACCESS,
FALSE, main_pid);

 if (h_proc) {

 TerminateProcess(h_proc, 1);

 CloseHandle(h_proc); } }

Listing 1: Killing a process in the system.

char* window_handle[] = { “The Wireshark Network
Analyzer”, “Microsoft Network Monitor” };

void anti-traffi c_routine()

{

 for(int temp = 0; temp < (sizeof(sText) /
sizeof(char*)); temp++)

 {

 HWND handle_fi nd = FindWindow(0, sText[temp]
);

 if(handle_window != NULL)

 {

 SendMessage(handle_fi nd, WM_CLOSE, 0, 0);

 }

 }

}

Listing 2: Anti-traffi c routine using FindWindows().

VIRUS BULLETIN www.virusbtn.com

17JUNE 2012

routines in the form of assembly code which is embedded
as inline code. However, this is not the only way. Listing 1
shows the code that is used to kill a process in the system.
All the running processes are enumerated fi rst, then once the
active processes have been found, the malicious code looks
for the target process and kills it.

Other methods involve retrieving a handle to the window
of the running program using FindWindow() and
FindWindowEx(). This method simply requires fi nding
a handle to the window of the running traffi c-monitoring
program. A WM_CLOSE message is then sent to kill it.
Listing 2 shows how this is achieved. When this kind of code
is triggered in the system, the traffi c analysis program is
killed and an exception is raised, as shown in Figure 2.

Malware writers also try to open the fi le handle to \\.\NPF_
NdisWanIp to query information about the interface and
verify the state of the adapter. Registry-based detection is
another viable method for detecting the state of programs
in the system – for example, some of the Wireshark registry
entries present in Windows XP are presented in Listing 3.
If the Wireshark program is installed properly then these
registry entries must exist. The registry path might vary with
different operating systems. Listing 4 shows the registry
entries for the presence of Microsoft Network Monitor on
Windows 7.

ANTI-PROTECTION ANALYSIS
All of the above techniques can also be applied to detect
the presence of SysAnalyzer, Windows Defender and
Microsoft’s Security Essentials as well as other anti-
virus engines running in the system. There are also
other methods, such as querying Windows Management
Instrumentation (WMI), that can be used to gain
information about the state of the Windows operating
system. Listing 5 shows how WMI is used for querying
installed programs in Windows. Similarly, fi rewalls that are
installed on a system can also be enumerated.

ANTI-DEBUGGING TRICKS

Anti-debugging is a method that malware writers use to
prevent active debugging of the executable/binary when
a relevant process is triggered in the system. This method
plays a signifi cant role in disrupting the analysis process.
Malware writers can implement several methods to trigger
anti-debugging routines in the malicious code.

Generally, Application Programming Interface (API)
calls are used for this purpose. Windows provides
inbuilt API calls such as IsDebuggerPresent() and
CheckRemoteDebuggerPresent(), which are used

to detect the presence of user-mode debuggers.
IsDebuggerPresent() is used to determine whether the
running process has a user-mode debugger attached to
it. CheckRemoteDebuggerPresent() is used to determine
whether a given process is being debugged. Generally,
IsDebuggerPresent() is used extensively in malicious codes
that are forced to execute in user mode.

• Bypassing IsDebuggerPresent(): There are several
techniques that can be used to bypass this debugger
detection API. The fi rst involves tampering with the
code fl ow. In this, the primary task of the reverse
engineer is to remove (overwriting with NOP) the
instructions that perform comparisons in the code
and then manipulate the fl ow of code by tampering
with JMP (JNZ → JZ, and so on). A second technique

Figure 2: Running anti-traffi c analysis code results in an
exception.

HKEY_LOCAL_MACHINE\SOFTWARE\Classes\Applications\
wireshark.exe

HKEY_LOCAL_MACHINE\SOFTWARE\Classes\wireshark-
capture-fi le

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\
CurrentVersion\App Management\ARPCache\Wireshark

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\
CurrentVersion\App Paths\wireshark.exe

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\
CurrentVersion\Uninstall\Wireshark

Listing 3: Registry entries for Wireshark in Windows XP.

HKEY_CURRENT_USER\Software\Microsoft\Netmon3

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Netmon3

Listing 4: Registry entries for Network Monitor in
Windows 7.

VIRUS BULLETIN www.virusbtn.com

18 JUNE 2012

involves overwriting the fl ags. Here, the reverse
engineer overwrites the _PEB.BeingDebugged fl ag in
the Process Execution Block (PEB), which is pointed to
by the Thread Execution Block (TEB).

• Bypassing CreateRemoteDebuggerIfPresent():
To successfully bypass this API, it is necessary
to hook the process. This function is different
from IsDebuggerPresent() because it takes two
different arguments as handles to the process
and pointer referencing a variable (true, false).
The IsDebuggerPresent() function does not
call any specifi c arguments, rather it relies
on the internal NT calls to determine the
presence of a user-mode debugger. To bypass

CreateRemoteDebuggerIfPresent(), it is necessary to
perform hooking in the running code.

Practical examples of these techniques have been discussed
in [5, 6]. Another method for detecting the presence of a
debugger in the system is based on a simple registry key
check to verify if the specifi c key related to the debugger
(such as OllyDbg) is present in the registry. This is an easy
tactic but it is not a robust way to detect debuggers in the
system because registry entries can easily be tampered with.
The FindWindow() trick is an old one, but works well to
check the presence of any active window pointing to the
running state of a debugger in the system. Considering
program code, the presence of code-based debugging APIs
such as OutputDebugString() with error handing APIs
such as GetLastError()/ SetLastError() is another easy way
to detect the presence of a debugger. Several interesting
anti-debugging techniques have been discussed in [7].

CONCLUSION
We have discussed several techniques and tactics used
by malware writers to analyse the operating system
environment before the malware is executed. This enables
them to bypass several host-based protection solutions and
detection tools. The methods discussed here are not the
only ones used, but these concepts should provide a good
basic understanding. Some of these techniques have been
widely researched, demonstrating the importance of these
issues. We believe that there are still more robust techniques
available that might not yet have been seen in the wild.

REFERENCES
[1] Hunting Metamorphic Engines.

http://www.truststc.org/pubs/237/hunting.pdf.

[2] Advanced Polymorphic Techniques.
http://www.waset.org/journals/waset/v34/v34-45.pdf.

[3] Advanced self-modifying code.
http://migeel.sk/blog/2007/08/02/advanced-self-
modifying-code/.

[4] Fighting EPO Viruses. http://www.megapanzer.com/
wp-content/uploads/fi ghting_epo_viruses.pdf.

[5] CheckRemoteDebuggerPresent Bypass.
http://gunboundinfo.blogspot.com/2008/10/
checkremotedebuggerpresent-bypass-by.html.

[6] IsDebuggerPresent Bypass.
http://gunboundinfo.blogspot.com/2008/10/
isdebuggerpresent-bypassing-by-wiccaan.html.

[7] Anti-Debugging – A Developers View.
http://www.shell-storm.org/papers/fi les/764.pdf.

[Listing Spyware Programs]

wmic:root\cli>/Node:localhost /Namespace:\\root\
SecurityCenter2 Path AntiSpywareProduct Get displa
yName,productState,instanceGuid,pathToSignedProduc
tExe,PathToSignedReportingExe /format:list

displayName=Windows Defender

instanceGuid={D68DDC3A-831F-4fae-9E44-
DA132C1ACF46}

pathToSignedProductExe=%ProgramFiles%\Windows
Defender\MSASCui.exe

pathToSignedReportingExe=%SystemRoot%\System32\
svchost.exe

productState=393472

displayName=Microsoft Security Essentials

instanceGuid={2C040BB5-2B06-7275-5A21-
2B969A740B4B}

pathToSignedProductExe=C:\Program Files\Microsoft
Security Client\msseces.exe

pathToSignedReportingExe=C:\Program Files\
Microsoft Security Client\MsMpEng.exe

productState=397312

[Listing AntiVirus Programs]

wmic:root\cli>/Node:localhost /Namespace:\\root\
SecurityCenter2 Path AntiVirusProduct Get displayN
ame,productState,instanceGuid,pathToSignedProductE
xe,PathToSignedReportingExe /format:list

displayName=Microsoft Security Essentials

instanceGuid={9765EA51-0D3C-7DFB-6091-
10E4E1F341F6}

pathToSignedProductExe=C:\Program Files\Microsoft
Security Client\msseces.exe

pathToSignedReportingExe=C:\Program Files\
Microsoft Security Client\MsMpEng.exe

productState=397312

Listing 5: Enumerating anti-virus and anti-spyware
programs in Windows.

http://www.truststc.org/pubs/237/hunting.pdf
http://www.waset.org/journals/waset/v34/v34-45.pdf
http://migeel.sk/blog/2007/08/02/advanced-self-modifying-code/
http://www.megapanzer.com/wp-content/uploads/fighting_epo_viruses.pdf
http://gunboundinfo.blogspot.com/2008/10/checkremotedebuggerpresent-bypass-by.html
http://gunboundinfo.blogspot.com/2008/10/isdebuggerpresent-bypassing-by-wiccaan.html
http://www.shell-storm.org/papers/files/764.pdf

VIRUS BULLETIN www.virusbtn.com

19JUNE 2012

UNDERSTANDING THE DOMAINS
INVOLVED IN MALICIOUS
ACTIVITY ON FACEBOOK
Alin Damian
Bitdefender, Romania

Recent years have been marked by an explosive growth of
social networks including Facebook, Twitter and Google+.
At the start of 2011, Facebook had around 600 million
registered members – that number is now fast approaching
one billion.

This paper will analyse malicious domains extracted from
Facebook applications and posts, based on scams detected
by Bitdefender’s Safego product. Previous studies of
malware on Facebook have tended to focus on revealing
the ‘social engineering’ part of the attacks, analysing
their content and the way they spread. We will try to go
deeper, looking at the domains on which these malicious
applications are hosted, and the connection between
applications’ hosting domains and those associated with
more traditional methods of threat distribution (spam,
phishing, etc.).

INTRODUCTION
With nearly a billion registered users, more than 2.7 billion
‘likes’ and comments per day, and a huge presence all over
the world, Facebook has become one of the most attractive
channels for cybercriminal activity.

EXPERIMENTAL SET-UP
This study is based on URLs extracted from over 20,000
scam items (posts, comments, videos, etc.) detected by our
Safego product. From these items we have extracted around
10,000 unique URLs, approximately 50% of which point to
Facebook pages and applications (Figure 1).

Figure 1: URLs extracted from infected items fl agged by
Bitdefender Safego.

Our fi rst goal was to determine how many of the domains
were also encountered in more traditional methods of threat

distribution. We found that almost 47% of the analysed
URLs had previously been seen in other channels of threat
propagation. We split these into four categories: malware,
spam, fraud (scams) and phishing (Figure 2).

Figure 2: Different types of threats found and their
distribution.

Next, we analysed the URLs that hadn’t been found on any
blacklists. The most striking observation in this case was
the large presence of URL-shortening domains and hosting
domains.

Figure 3: Distribution of URLs not found on blacklists.

Of the shortening domains, the most dominant service
was ‘bit.ly’ (90%), followed by ‘t.co’, Twitter’s shortening
service. It is interesting to note that the same malicious
URLs are used across several different social networks,
combining Facebook, Twitter and others.

Figure 4: Distribution of shortening services.

When it comes to hosting domains, the situation is a little
more balanced. ‘Blogspot.com’ is the domain that appears
most often, followed by Amazon’s ‘amazonaws.com’,
and ‘co.cc’, a well-known domain in the world of scams
and fraud.

TECHNICAL FEATURE 3

VIRUS BULLETIN www.virusbtn.com

20 JUNE 2012

Figure 5: Distribution of hosting domains.

A few questions probably come to mind, such as ‘What
are these companies doing to stop scams being hosted on
their domains?’ and ‘How long are these websites available
before they are taken down?’. Unfortunately, the answer
to the fi rst question is ‘Not very much’. Of 121 malicious
domains hosted at ‘blogspot.com’, about 94% remained
active after more than 20 days. We consider this to be too
long. (According to [1], on average, a phishing domain lasts
about three days.)

DANGEROUS FACEBOOK APPLICATIONS
A recent dangerous Facebook application that comes to
mind is a scam disguised as an invitation to view a leaked
sex video.

When the user attempts to view the video they are prompted
to install a YouTube extension (which, of course, is
malicious code rather than a real YouTube extension). Once
installed, the extension changes all newly opened browser
tabs to a page advertising an adult chat service.

The scammer is also now able to impersonate the user (by
reading the cookie stored on Facebook.com), advertise the
scam and ‘like’ the scam’s Facebook page from the victim’s
account.

Another scam that deserves a mention is a ‘survey scam’
that tricks Firefox and Chrome users into installing a
‘Prenium’ plug-in.

An initial Facebook post invites the user to view a YouTube
video showing an Italian model/TV host in an embarrassing
situation. However, the user is told that they need to install a
plug-in in order to view the video.

After following the instructions for installing the plug-in,
the video described in the initial post is played – thus
suggesting that this was a legitimate download. However, on
returning to Facebook, just a loading icon is displayed.

Eventually, the browser redirects the user to a page stating
‘Your account was recently accessed from a location we’re
not familiar with’. The text goes on trying to scare the user
into believing that something is wrong with their Facebook
account. However, the option to ‘Continue’ with the account
verifi cation process is not available because it is blocked by
a scam survey.

In most cases, closing the page will get you out of this tight
spot, but in this case the warning page comes back up no
matter where you click: Profi le, Messages, Privacy Settings
etc. – all roads lead to the survey.

The browser add-on method as described above is a recent
development in the world of social scams, and it seems to
be quite effi cient.

BENEFITS GAINED BY CYBERCRIMINALS
Ultimately, cybercriminals are seeking fi nancial gain when
creating and spreading malicious Facebook applications.

One of the main purposes of these Facebook applications is
to spread malware, which can then be used in many harmful
ways.

Some of the applications are intended to steal personal
and sensitive information from users. For example, a user
divulging his mother’s maiden name (the old standard used
by many fi nancial and banking sites to confi rm identity and
gain access to account information) can then be exposed to
different types of attacks.

Other applications will lead to phishing websites,
through which the cybercriminals may steal money or
personal data.

The benefi ts for cybercriminals of the well-known ‘likejack’
campaigns are interesting. In a successful campaign, a
Facebook page gains a large number of ‘likes’. This can be
monetized in two ways:

1. The cybercriminal may change the content of the page
and advertise an attractive contest with a large sum of
money or other valuable item as the prize. A page with
100,000 likes will seem more credible to users than a
brand new one. Users will then be duped into entering
the competition via some method that generates
revenue for the attackers. For example, a Facebook
page that impersonated Orange Romania claimed to
be organizing a contest in which an iPhone 4S was up
for grabs. The page claimed that, in order to be entered

VIRUS BULLETIN www.virusbtn.com

21JUNE 2012

into the prize draw, users had to send an SMS (at the
cost of two euros).

2. A page with a large number of visits or ‘likes’ can be
used to obtain money from advertising or pay-per-click
websites.

PERSISTENCE
To determine the lifespan of a Facebook application, we
collected data for more than 1,000 applications over a
10-day period. On the 11th day, we rechecked the status of
each of them. The results are plotted in Figure 6. We found,
for example, that 33% of the applications collected on the
third day remained active for eight days, until the end of our
testing period.

Figure 6: Persistence of Facebook applications over time.

CONCLUSION
We have seen that almost half of malicious URLs that
spread in social media environments are also found in
other traditional threats and the most dominant category
found is ‘malware’. The other half is represented by URLs
that are designed to be used in social media because they
sit very well in this environment. We also showed that
cybercriminals use malicious URLs in more than one social
network, maximizing the chances of making a profi t with
minimum effort.

The goal of malicious Facebook applications is to help
cybercriminals gain money from illegal activities – which
may range from installing infected executables on users’
machines, to innovative and complex scams that trick users,
or stealing sensitive information via websites that propagate
through spam and/or which impersonate legitimate
companies (phishing).

REFERENCES
[1] McGrath, D.K.; Gupta, M. Behind Phishing: An

Examination of Phisher Modi Operandi. Proceedings
of the 1st USENIX Workshop on Large-Scale
Exploits and Emergent Threats, 2008.

EICAR 2012
Eddy Willems
EICAR and G Data, Belgium

While the 2011 EICAR conference
was dominated by the buzzword
‘cyberwar’, the theme of the 2012
EICAR conference was ‘Cyber
Attacks – Myths and Reality in a Contemporary Context’.
The recent past has brought about a considerable shift
in the underground world of malicious code writers – a
swing from the thrill-seeking geeks striving for fame
and glory, to professional criminals using sophisticated
methodologies for the ultimate goal of fi nancial gain. The
contemporary threat scenario calls for an adaptation of
defence technology and methodologies. Although scientifi c
research can provide a baseline for innovations, we need a
more holistic approach towards the implementation of such
new technologies – this year’s conference invited papers to
address some of these issues.

OPENING
The conference took place at the Marriott Hotel in
Lisbon, Portugal. The event started with a pre-programme
presentation by Dr Eric Filiol (ESIEA): ‘Why and how the
current AV approach fails’. Eric underlined the need for
innovation or even a change within security products to
counter the recent fl ood of malware and targeted attacks.
One initiative that aims to introduce change is DAVFI,
a consortium involving the computing department of
French technology institute ESIEA, deep packet inspection
fi rm Qosmos, IP solutions provider Nov’IT, and naval
group DCNS. The consortium has started to develop an
open-source anti-virus solution based on new detection
techniques, which it hopes to make available in both
consumer and professional versions by 2014. It remains
to be seen whether the consortium can come up with new
innovations and techniques. EICAR will play a supporting
role in bringing users together and asking them what they
think a new product should look like, and will feed this
input back to the consortium.

The morning after the traditional EICAR members’ meeting
and welcome party, Chairman Rainer Fahs offi cially opened
the EICAR conference and welcomed Wade Williamson
from Palo Alto Networks as the keynote speaker. In his
address he summarized an interesting study in which
researchers analysed traffi c within several corporate
networks and found a lot of unknown traffi c related to
malware. Unknown traffi c is usually relatively rare in
corporate networks. Inspecting this traffi c showed that a lot

CONFERENCE REPORT

VIRUS BULLETIN www.virusbtn.com

22 JUNE 2012

of data seemed to have been encrypted to evade detection.
Circumventing technologies are pervasive in enterprise
networks and often represent high-risk applications. The
conclusion was that intelligent network analysis at specifi c
points in the network can stop new malware entering at the
source.

Axelle Apvrille and Tim Strazzere continued with a deep
look at mobile malware. The fact that end-users have
diffi culties spotting malicious mobile applications means
that most Android malware goes unnoticed for up to three
months before a security researcher fi nally stumbles
upon it. Axelle and Tim have put together a Google Play
crawler to detect Android malware when launched in the
marketplace. Google enforces its own communication
protocol to browse and download applications from its
market. The market crawler can reverse and implement
this protocol, issue appropriate search requests and
take necessary steps so as to avoid being banned. The
crawler is based around a heuristics engine that statically
pre-processes and prioritizes samples. The engine uses
39 different fl ags of different nature such as Java API
calls, presence of embedded executables, code size, URLs
etc. Each fl ag is assigned a different weight, based on
the techniques mobile malware authors most commonly
use in their code. The engine outputs a risk score which
highlights the samples that are the most likely to be
malicious.

Mobile malware was the subject of several presentations.
A number of examples of mobile malware were shown in
speeches from Itshak Carmona and Alex Polischuk, and
Taras Malivanchuk showed how static analysis and generic
detection can be used to detect mobile malware.

In his presentation, Dr Vlasti Broucek showed that, to
date, there has been little consideration of how differences
between indiscriminate malware and targeted attack tools
hamper the capacity of organizations to manage risk.
His paper considered how the continuum from malware
through to targeted attack tools poses a range of technical,
legal and moral dilemmas that organizations need to face
before relying on cloud solutions. He even suggested that
it is doubtful as to whether we can ever trust the cloud
completely.

Anoirel Issa highlighted the problems AV researchers face
when using VMs and emulators. Many virtual machines
(e.g. VMware, Qemu, VirtualBox and sandboxes) are
available and are widely used by malware researchers and
analysts. Moreover, many anti-virus scanners incorporate
their own implementation of emulators that run malicious
code within a controlled environment in order to decrypt
obfuscated code. Virus writers have always responded to
such technologies and the majority of today’s malware uses

anti-debugging techniques to counter analysis and evade
detection – this is not likely to stop.

David Harley gave two presentations this year. The fi rst was
about AMTSO and the work and progress the organization
has made over the last couple of years. In his second
presentation, David outlined some recommendations for the
public in using passwords and pin codes. Weak passwords
and pin codes are a problem that is underestimated by a lot
of security managers and administrators.

It is traditional for student papers to be presented at EICAR
conferences, and the two awarded with ‘best student paper’
status this year were: ‘In situ reuse of logically extracted
functional components’ by Craig Miles, Arun Lakhotia
and Andrew Walenstein, and ‘The security of databases’
by Baptiste David, Dorian Larget and Thibaut Scherrer,
which took a deep look inside security problems related to
MS Access.

John Aycock gave a controversial presentation describing
his study of Kwyjibo, a sophisticated domain/word
generation algorithm that is able to produce over
48 million distinct pronounceable words. He showed
through four different implementations how Kwyjibo
might be deployed, and how its size can be reduced
to under 163KB using a technique known as lossy
distribution compression. This means that Kwyjibo is both
powerful as well as small enough to be used by malware
on mobile devices.

One of the talks I enjoyed the most was given by Dr Richard
Ford and Dr Marco Carvalho on the subject of cyber
resilience. While there is great interest in resilient cyber
systems, the topic is clouded by the lack of an appropriate
defi nition of the term ‘resilience’ and by the challenges of
measuring the resilience of a system (if, indeed, this can
ever be done correctly).

It is not possible to describe every paper in detail here, but
others that were worthy of note include Marco Helenius’s
‘An evaluation of automated freeware C++ source code
analysers’, ‘Dronezilla – automated behavioural analysis
and testing framework’ by Claudiu Popa, and Cristina
Vatamanu’s presentation which outlined ‘An approach of
clustering malicious PDF documents’.

NEXT YEAR AND THE FUTURE

This year’s event was another great one and I’m already
looking forward to the next – EICAR 2013 is scheduled to
be held in Cologne, Germany from 9 to 11 June 2013.

Details of next year’s conference as well as some new
initiatives from EICAR regarding the DAVFI project will
appear soon on http://www.eicar.org/.

http://www.eicar.org/

EC-Council Summit Boston takes place 4–7 June 2012 in Boston,
MA, USA. Other summits take place 11–14 June in San Antonio,
CA, and 20–23 August in San Jose, CA. For details of each see
http://www.eccouncil.org/training/advanced_security_training/cast_
summit.aspx.

The MAAWG 25th General Meeting will be held 5–7 June 2012
in Berlin, Germany. MAAWG meetings are open to members and
invited guests only. For questions and invite requests see
http://www.maawg.org/contact_form.

Security Summit Rome takes place 6–7 June 2012 in Rome, Italy.
For details see https://www.securitysummit.it/.

NISC12 will be held 13–15 June 2012 in Cumbernauld, Scotland.
The event will concentrate on ‘The Diminishing Network Perimeter’.
For more information see http://www.nisc.org.uk/.

The 24th annual FIRST Conference takes place 17–22 June 2012
in Malta. For details see http://conference.fi rst.org/.

The 9th CISO Summit & Roundtable takes place 27–29 June
2012 in Prague, Czech Republic. See http://www.mistieurope.com/.

Black Hat USA will take place 21–26 July 2012 in Las Vegas, NV,
USA. For more information see http://www.blackhat.com/.

The 21st USENIX Security Symposium will be held 8–10 August
2012 in Bellevue, WA, USA. For more information see
http://usenix.org/events/.

TakeDownCon Baltimore is scheduled to take place 25–30 August
2012 in Baltimore, MD, USA. Interest can be registered at
http://www.takedowncon.com/Events/Baltimore.aspx.

SOURCE Seattle 2012 takes place 13–14 September 2012 in
Seattle, WA, USA. A call for papers has been announced, with
a deadline date of 25 June. For more information see
http://www.sourceconference.com/seattle/.

VB2012 will take place 26–28 September 2012 in Dallas, TX,
USA. Online registration is now available. Full details can be found
at http://www.virusbtn.com/conference/vb2012/.

Security Summit Verona takes place 4 October 2012 in Verona,
Italy. For details see https://www.securitysummit.it/.

Ruxcon takes place 20–21 October 2012 in Melbourne, Australia.
A call for papers has been announced, with a deadline date of
15 July. See http://www.ruxcon.org.au/.

Hacker Halted USA will take place 25–31 October 2012 in
Miami, FL, USA. http://www.hackerhalted.com/.

SOURCE Barcelona 2012 takes place 16–17 November 2012 in
Barcelona, Spain. For details see http://www.sourceconference.com/
barcelona/.

TakeDownCon Las Vegas is scheduled to take place 1–6
December 2012 in Las Vegas, NV, USA. Interest can be registered
at http://www.takedowncon.com/Events/LasVegas.aspx.

VB2013 will take place 2–4 October 2013 in Berlin, Germany.
Details will be revealed in due course at http://www.virusbtn.com/
conference/vb2013/. In the meantime, please address any queries to
conference@virusbtn.com.

END NOTES & NEWS
ADVISORY BOARD
Pavel Baudis, Alwil Software, Czech Republic

Dr Sarah Gordon, Independent research scientist, USA

Dr John Graham-Cumming, Causata, UK

Shimon Gruper, NovaSpark, Israel

Dmitry Gryaznov, McAfee, USA

Joe Hartmann, Microsoft, USA

Dr Jan Hruska, Sophos, UK

Jeannette Jarvis, McAfee, USA

Jakub Kaminski, Microsoft, Australia

Eugene Kaspersky, Kaspersky Lab, Russia

Jimmy Kuo, Microsoft, USA

Chris Lewis, Spamhaus Technology, Canada

Costin Raiu, Kaspersky Lab, Romania

Péter Ször, McAfee, USA

Roger Thompson, Independent researcher, USA

Joseph Wells, Independent research scientist, USA

SUBSCRIPTION RATES
Subscription price for Virus Bulletin magazine (including

comparative reviews) for one year (12 issues):

• Single user: $175

• Corporate (turnover < $10 million): $500

• Corporate (turnover < $100 million): $1,000

• Corporate (turnover > $100 million): $2,000

• Bona fi de charities and educational institutions: $175

• Public libraries and government organizations: $500

Corporate rates include a licence for intranet publication.

Subscription price for Virus Bulletin comparative reviews

only for one year (6 VBSpam and 6 VB100 reviews):

• Comparative subscription: $100

See http://www.virusbtn.com/virusbulletin/subscriptions/ for
subscription terms and conditions.

Editorial enquiries, subscription enquiries, orders and payments:

Virus Bulletin Ltd, The Pentagon, Abingdon Science Park, Abingdon,
Oxfordshire OX14 3YP, England

Tel: +44 (0)1235 555139 Fax: +44 (0)1865 543153

Email: editorial@virusbtn.com Web: http://www.virusbtn.com/

No responsibility is assumed by the Publisher for any injury and/or
damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any methods,
products, instructions or ideas contained in the material herein.

This publication has been registered with the Copyright Clearance
Centre Ltd. Consent is given for copying of articles for personal or
internal use, or for personal use of specifi c clients. The consent is
given on the condition that the copier pays through the Centre the
per-copy fee stated below.

VIRUS BULLETIN © 2012 Virus Bulletin Ltd, The Pentagon, Abingdon
Science Park, Abingdon, Oxfordshire OX14 3YP, England. Tel: +44
(0)1235 555139. /2012/$0.00+2.50. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

VIRUS BULLETIN www.virusbtn.com

23JUNE 2012

http://www.ruxcon.org.au/
http://www.hackerhalted.com/
http://www.sourceconference.com/barcelona/
http://www.virusbtn.com/conference/vb2013
http://www.virusbtn.com/conference/vb2012
mailto:editorial@virusbtn.com
http://www.virusbtn.com/
http://www.virusbtn.com/virusbulletin/subscriptions
http://www.eccouncil.org/training/advanced_security_training/cast_summit.aspx
http://www.maawg.org/contact_form
https://www.securitysummit.it/
http://www.nisc.org.uk/
http://conference.first.org/
http://www.mistieurope.com/
http://www.blackhat.com/
http://usenix.org/events/
http://www.takedowncon.com/Events/Baltimore.aspx
http://www.sourceconference.com/seattle/
https://www.securitysummit.it/
http://www.takedowncon.com/Events/LasVegas.aspx

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

