
JUNE 2013

CONTENTS IN THIS ISSUE

IS
S

N
 1

74
9-

70
27

Covering the global threat landscape

SKYPE SPAMMER
SKAgent, an unencrypted, unsophisticated piece
of malware, sends spam messages via Skype.
Raul Alvarez describes the simple copy-and-paste
technique it uses to do so.
page 4

CROSS-PLATFORM INFECTION
A cross-infector of unrelated platforms is typically
implemented as two viruses stuck together – but
if the general mechanics of fi le enumeration
and infection are the same across the affected
platforms, then a virus can implement an
abstraction layer and expose APIs that each of the
routines can call to perform essential functions.
{W32/Linux/OSX}/Clapzok does just that. Peter
Ferrie has the details.
page 7

FOLLOWING THE MONEY
The exchange rate of the digital currency Bitcoin
(BTC) passed the US$200/BTC1 mark earlier this
year – a fact that has not escaped the attention of
cybercriminals. Micky Pun takes a look at one of
the latest Bitcoin-mining malware families.
page 14

2 COMMENT

 Password sweepstakes

3 NEWS

 You can’t stop the music

 Nations invest in cyber defence

3 MALWARE PREVALENCE TABLE

 MALWARE ANALYSES

4 Chat-and-paste

7 MultiPlatform Madness!

10 SPOTLIGHT

 Greetz from academe: Content-Agnostic
 Malware Protection

 FEATURES

12 Java: setting security manager to null

14 Bitcoin mining: investing in the future of the
 underground market

17 END NOTES & NEWS

2 JUNE 2013

COMMENT

Editor: Helen Martin

Technical Editor: Dr Morton Swimmer

Test Team Director: John Hawes

Anti-Spam Test Director: Martijn Grooten

Security Test Engineer: Simon Bates

Sales Executive: Allison Sketchley

Perl Developer: Tom Gracey

Consulting Editors:
Nick FitzGerald, AVG, NZ
Ian Whalley, Google, USA
Dr Richard Ford, Florida Institute of Technology, USA

PASSWORD SWEEPSTAKES
In a bid to engage users and get them thinking about
password security, Intel recently launched a ‘password
grader’ along with a prize draw, inviting visitors to
test the strength of their password, with the chance of
winning an Ultrabook.

The grader itself asks the user to type in what they think
would be a strong password, while a footnote hastily
urges users not to actually enter their real passwords
(like other password checkers available on the Internet,
information entered into the grader is not retained, and
the string is checked on the local machine – nevertheless,
Intel errs on the side of caution, with a note which
initially1 read: ‘[The information] is not sent over the
Internet. Just the same, PLEASE DO NOT ENTER
YOUR REAL PASSWORD.’).

While those with some degree of security know-how
may have whiled away fi ve minutes pitting different
combinations against the grader to see what response
it would come up with (congratulations to the security
researcher who swiftly generated the response ‘It would
take about infi nity years to crack your password’), I would

1 Since being pilloried across the Internet for a catalogue of faux pas
ranging from poor grammar and spelling to failing to use standard
HTTPS web encryption, several aspects of the website have been
tweaked – including rewording in several places and switching
from a plain HTTP connection to HTTPS.

be surprised if there were many real-world users that
heeded the warning against entering their real passwords –
particularly since the message was mixed, the introduction
suggesting you ‘see how strong your password is’ (either
you’re meant to test your own password or you aren’t, but
Intel seemed unable to decide).

Password (in)security has been a problem for many years.
In 2007, a survey of offi ce workers run in conjunction
with the Infosecurity Europe exhibition found that 64%
of people would reveal their password in exchange for a
bar of chocolate. More recently, concerns have focused
on both the weakness of users’ passwords (according to a
report from UK communications watchdog Ofcom, 26%
of users say they tend to use easy-to-remember passwords
such as birthdays or names) and the tendency of users to
repeat the same password over multiple sites (the same
Ofcom survey found that 55% of UK adults use the same
password to access most of the sites they visit).

Deloitte has predicted that in 2013 more than 90% of
user-generated passwords will be vulnerable to hacking,
which is all the more concerning when taking into account
the fact that the average user has 26 password-protected
accounts, but only fi ve different passwords.

Clearly, the importance of password security continues to
need to be highlighted, and lessons in how to pick secure
passwords continue to need to be taught. Intel can’t be
blamed for trying to convey such a lesson in a fun and
attention-grabbing manner – capturing the imagination
of end-users when it comes to security education is
one of the greatest hurdles. Nevertheless, encouraging
users to enter their password on a site with a plain
HTTP connection, tempting them with a prize, and then
requiring them to enter their name and email address (in
order to enter the draw) was perhaps not the best of ideas.

But not all password graders are as off-the-mark as
Intel’s was. A recent study by researchers from the
University of California at Berkeley, the University of
British Columbia and Microsoft looked at the impact of
password meters positioned on websites at the point at
which the user sets up or changes their password. Users
presented with a password grader were found to enter
stronger passwords than those who were not presented
with one. (The study also found that those who had
selected stronger passwords with the help of a grader
had no more diffi culty remembering their passwords two
weeks later than those who had chosen weaker ones.)

Of course, the value of a password grader lies in the
algorithms behind it, but the results of the study are
certainly encouraging – and an increase in the number
of password-protected services that integrate such tools
would be a boost for this aspect of security.

‘Capturing the
imagination of
end-users when it
comes to security
education is one
of the greatest
hurdles.’
Helen Martin, Virus Bulletin

3JUNE 2013

VIRUS BULLETIN www.virusbtn.com

NEWS
YOU CAN’T STOP THE MUSIC
Music may soon do more than make the world go round,
according to researchers at the University of Alabama at
Birmingham (UAB).

The researchers investigated the possibility of malware
on mobile devices being activated and controlled via
sensing-enabled channels – based on acoustic, visual,
magnetic and vibrational signalling. They placed a piece
of malware on an Android phone and found that they were
able to send an activation signal to it using music – from a
distance of 55 feet.

The researchers also managed to successfully activate the
malware using using music videos; the light emitted from a
television, computer monitor and overhead bulbs; vibrations
from a subwoofer; and magnetic fi elds.

Unlike traditional means of controlling malware, which
rely on network-based channels that can easily be detected
and blocked by fi rewalls and anti-malware products, the
methods demonstrated by the UAB researchers would be
extremely diffi cult to detect.

While the researchers acknowledge that an attack such as
this is highly sophisticated and currently very diffi cult to
build, they warn that it will become easier to accomplish
in the future as technology moves on, and called for the
industry to look at creating appropriate defences before
these techniques become widespread.

The full paper can be found at http://students.cis.uab.edu/
zawoad/paper/asia03-hasan.pdf.

NATIONS INVEST IN CYBER DEFENCE
Indonesia is set to become the latest country to establish a
cyber defence force, according to reports from Chinese state
news agency Xinhua.

The agency reports that the Indonesian ‘cyber army’ will be
manned by specially trained uniformed soldiers and will be
embedded within the country’s armed forces.

Indonesia’s state ministries and agencies are reported to
have been targeted by more than 36.6 million cyber attacks
over the course of the last three years.

Meanwhile, on the other side of the world, Jamaica’s
Minister of State has announced that the government is set
to establish a Cyber Emergency Response Team to protect
the country’s Internet infrastructure.

In addition to developing an infrastructure for coordinating
response to threats, conducting incident, vulnerability and
artefact analyses, the CERT will also help organizations
develop their own incident management capabilities. The
CERT is expected to be implemented in December.

Prevalence Table – April 2013 [1]

Malware Type %

Heuristic/generic Trojan 7.90%

Adware-misc Adware 7.55%

Autorun Worm 6.06%

BHO/Toolbar-misc Adware 5.87%

Heuristic/generic Virus/worm 3.68%

Agent Trojan 3.43%

Dorkbot Worm 3.38%

Injector Trojan 2.64%

Sality Virus 2.59%

Iframe-Exploit Exploit 2.57%

Wintrim Trojan 2.39%

Crypt/Kryptik Trojan 2.38%

Confi cker/Downadup Worm 2.33%

Potentially Unwanted-misc PU 2.32%

OneScan Rogue 2.16%

Dropper-misc Trojan 1.99%

Phishing-misc Phish 1.70%

Jeefo Worm 1.65%

Bundpil Worm 1.55%

FakeAV-Misc Rogue 1.53%

bProtector Adware 1.40%

Sirefef Trojan 1.33%

Encrypted/Obfuscated Misc 1.21%

Virut Virus 1.20%

Crack/Keygen PU 1.10%

Java-Exploit Exploit 0.99%

Downloader-misc Trojan 0.94%

Zbot Trojan 0.90%

Meredrop Worm 0.87%

Gamarue Worm 0.87%

Hamweq/Ircbrute Worm 0.85%

Blacole Exploit 0.85%

Others [2] 21.83%

Total 100.00%

[1] Figures compiled from desktop-level detections.

[2] Readers are reminded that a complete listing is posted at
http://www.virusbtn.com/Prevalence/.

http://students.cis.uab.edu/zawoad/paper/asia03-hasan.pdf
http://www.virusbtn.com/Prevalence

VIRUS BULLETIN www.virusbtn.com

4 JUNE 2013

CHAT-AND-PASTE
Raul Alvarez
Fortinet, Canada

In January 2013 I looked at Phopifas, the malware that uses
Skype to send spam messages [1]. The messages display
different language equivalents of ‘lol is this your new
profi le pic?’, with the language dependent on the location of
the infected machine. The message also includes a link to a
site that hosts Dorkbot.

Just a couple of months later, another piece of malware was
discovered using Skype to send a malicious link to any open
Skype chat window. This piece of malware is a component
of the Shylock campaign. For the sake of brevity, we will
refer to it as ‘SKAgent’.

Unlike Phopifas, SKAgent’s coding is not complicated.
It does not have any stealth capabilities, and doesn’t
even perform any decryption. The interesting part is that
SKAgent doesn’t use any Skype modules to send the
malicious URL. So, how is this simple, unencrypted,
unsophisticated malware able to send spam messages
through Skype?

NOT SUCH A BIG DEAL
Just a few bytes smaller than Tinba [2], SKAgent weighs in
at only 17,408 bytes. The malware’s code is not encrypted
and static analysis will suffi ce – but of course, we want to
see it in action.

SKAgent doesn’t hash any of its APIs and makes no attempt
to hide them. Even the malicious URL is visible to the
naked eye. The malware’s single goal is to send the URL
through Skype.

Simple as it is, we will describe how this malware can send
a spam message without hooking the Skype application,
without injecting its code into any processes, and without
using any other plug-ins.

SEH PROTECTION
SKAgent sets a lot of SEH (Structured Exception Handling)
routines in order to avoid unforeseen errors that might
occur in and outside of its code. This is to make sure that
the malware continues its spamming activities even if it
encounters an error. But not even the most sophisticated
algorithm can prevent errors from occurring. If error events
do occur, the malware will be able to catch the erring event
and display an error message, as shown in Figure 1. The
numbers shown in the message will be different when the
actual error occurs. They will be generated by the malware.

The presence of an error message like the one shown is a
strong indication that a system is compromised by SKAgent
(or another malevolent application).

Figure 1: Error message.

GATHERING ALL RESOURCES
The resource section of the malware contains all the data it
needs for spamming, including the unencrypted malicious
URL string. Figure 2 shows the different resources found in
the resource section.

SKAgent locates the resource named ‘SET’ of type
RT_RCDATA by calling the FindResourceA API.
RT_RCDATA is a type of resource that contains raw data
defi ned by the malware. If the ‘SET’ resource is not found,
it will look for a resource named ‘DLY’ using the same API.

If the malware is also unable to locate the ‘DLY’ resource,
the whole application will terminate. If the ‘DLY’ resource
is found but there is no ‘SET’ resource, the application will
still terminate since some confi gurations are not performed.
This is a bug in the malware: it does not expect to fi nd the
‘DLY’ resource when the ‘SET’ resource is not available.

If the ‘SET’ resource is found, the call to the
FindResourceA API will yield a resource handle, which
is subsequently used by calling the LoadResource API.
After the call to the LoadResource API, a new handle will
be generated. This handle points to the location of the
malicious URL, to be used later during the spamming event.

Then, using the SizeofResource API, the malware gets
the size of the malicious URL. It locks the ‘SET’ resource
using the LockResource API while the URL is being copied
to the newly allocated virtual memory from a call to the
VirtualAlloc API.

Once the URL is securely tucked away, it will free the
‘SET’ resource using the FreeResource API. Since the
proper set-up has been performed, the ‘DLY’ resource
value will also be placed properly into the allocated
virtual memory using the same procedure as for the ‘SET’
resource. The ‘DLY’ resource contains the string ‘10000’.

The ‘DLY’ string, ‘10000’, is then converted to its
equivalent integer value 10000(0x2710). This value
represents the number of seconds the malware will wait
before it tries to send another spam message. (We will see it
being used during the spamming phase later.)

MALWARE ANALYSIS 1

VIRUS BULLETIN www.virusbtn.com

5JUNE 2013

Two other resources, namely ‘DVCLAL’ and
‘PACKAGEINFO’, can be seen in the resource section,
but these are not used during the malware execution and
spamming.

Figure 2: Different resources found in the resource section.

COPY-AND-PASTE
Phopifas has a complicated means of spamming its
malicious URL. It also determines the locale of a given
system in order to send a valid-looking message with the
URL. But for SKAgent, a simple copy-and-paste technique
proves suffi cient to send a spam message.

Regular chat users wanting to send a link or an exact copy
of a certain message would normally use the copy-and-paste
technique. Typically, this involves highlighting the relevant
text, pressing Ctrl-C to copy, pressing Ctrl-V to paste, and
fi nally, pressing the Enter key to send the message.

When you press Ctrl-C, the selected text is copied to the
clipboard in the background. The contents of the clipboard
will be replaced by the selected text and the text will be
ready for pasting. When you press Ctrl-V, the content of
the clipboard is copied to any editable window – e.g. a chat
window, text editor window, spreadsheet window, and so on.

SKAgent’s copy-and-paste method will only work if the
chat window is active (see Figure 3).

CTRL-C

To simulate Ctrl-C (the copying of the malicious URL to
the clipboard):

1. SKAgent gets the handle of the clipboard by calling
the OpenClipboard API. This handle is used for
succeeding calls to clipboard-related APIs.

2. The malware clears the clipboard by calling the
EmptyClipboard API.

3. The malicious URL is placed onto the clipboard as
CF_TEXT by calling the SetClipboardData API.

4. The handle is released by calling the
CloseClipboard API.

Once the clipboard has been set with the malicious URL,
the malware needs to monitor the active windows in order
to paste the content of the clipboard. Without using code
injection or rootkit capabilities, SKAgent can fi gure out
whether the chat window is active by using a combination
of two APIs.

SKAgent uses the GetGUIThreadInfo API to retrieve the
information for an active window. This API is able to get the
information for any active window, even if it is not owned by
the malware. Once SKAgent is running in the background,
it monitors each and every active window by calling the
GetGUIThreadInfo API and saving the information as the
GUITHREADINFO structure (see Figure 4).

The malware uses the GetClassNameA API to acquire the
class name of an active window. It uses hWndFocus from the
GUITHREADINFO structure as the handle parameter. The
resulting class name from the call to the GetClassNameA
API is checked against the string ‘TChatRichEdit’.

Figure 3: Copy-and-paste method.

VIRUS BULLETIN www.virusbtn.com

6 JUNE 2013

Figure 4: Information saved as the GUITHREADINFO
structure.

CTRL-V
If the class name of an active window matches
‘TChatRichEdit’, SKAgent emulates the Ctrl-V key
combination to paste the URL into that window.

Since the malicious link is already on the clipboard, the
malware just needs to simulate the Ctrl-V key combination
to paste the link.

To simulate Ctrl-V:

1. It calls the keybd_event API with parameters
(0x11,0,0,0) to simulate pressing and holding the
Ctrl key.

2. It makes another call to the keybd_event API with
parameters (0x56,0,0,0) to simulate pressing the
‘V’ key.

3. By calling the keybd_event API with parameters
(0x56,0,[Flags]2,0) and setting the Flags parameter
to 2 (KEYEVENTF_KEYUP), it simulates the
release of the ‘V’ key.

4. It makes another call to the keybd_event API with
parameters (0x11,0, 2,0), which simulates the
release of the Ctrl key.

At this point, the Ctrl-V key combination has been
emulated. Calling the keybd_event API twice more with
parameters (0x0D,0, 0,0) followed by (0x0D,0, 2,0),
simulates the pressing and releasing of the Enter key.

As long as the chat window is active, any message that
is typed or waiting in the ‘input’ area of the chat window
will be sent, including the malicious URL. If the user is
currently chatting with another person, he/she may notice
that the message containing the URL has been sent without
having pressed the Enter key.

SKAgent will sleep for 10,000ms (the value from the ‘DLY’
resource) before starting the process again, from copying
the malicious URL to the clipboard, up to the pasting of the
link into the active chat window.

The message containing the malicious URL has the
following format:

‘LOL http://www.[removed]k.com/images.php?id=
IMG0540250.JPG’.

(At the time of writing this article, the link is no longer
active, but for safety, I have removed part of the URL.)

ADVANTAGE OVER PHOPIFAS

Phopifas uses one of the Skype modules in order to spam
its malicious URL to users listed in the friends list. If a
machine is running a different chat application, Phopifas
won’t be able to infect it. In this case, it will take a different
piece of malware altogether to implement the infection of a
different chat program.

On the other hand, SKAgent doesn’t make use of any of
the modules used by Skype. It uses a simple technique
of copy-and-paste. If the malware is running as an active
process and the user is chatting using Skype, SKAgent
will paste the malicious URL into the chat window and
simulate the pressing and releasing of the Enter key. Even
if the user has not fi nished the message he or she is typing,
the simulated Ctrl-V and Enter sequence will send the
unfi nished message including the malicious URL.

Since it will appear to the person on the other side of the
conversation that the message has been sent by the person
that they are talking to, there is a signifi cant chance that the
malicious link will be clicked.

A simple tweak to the malware’s code would enable it
to copy and paste the malicious link to any kind of chat
application. All the user would need to do is to open the
chat window and malware would take care of the rest.

CONCLUSION

Any sort of chat application, from standalone chat programs
to the embedded chat messaging systems of social
networking sites, is vulnerable to this type of attack. One
way to avoid falling victim to such an attack is to avoid
clicking on any links in any chat windows, even if they
appear to have been sent by the person on the other side of
the conversation.

REFERENCES

[1] Alvarez, R. Talk To You Later. Virus Bulletin,
January 2013. http://www.virusbtn.com/
virusbulletin/archive/2013/01/vb201301-Talk.

[2] Alvarez, R. Tiny Modularity. Virus Bulletin, July
2012. http://www.virusbtn.com/virusbulletin/
archive/2012/07/vb201207-tiny-modularity.

http://www.virusbtn.com/virusbulletin/archive/2013/01/vb201301-Talk
http://www.virusbtn.com/virusbulletin/archive/2012/07/vb201207-tiny-modularity

VIRUS BULLETIN www.virusbtn.com

7JUNE 2013

MULTIPLATFORM MADNESS!
Peter Ferrie
Microsoft, USA

A cross-infector of entirely unrelated platforms is typically
implemented as two viruses stuck together, simply
because it’s the easiest way to do it. However, if the
general mechanics of fi le enumeration and infection are
the same across the affected platforms, then a virus can
implement an abstraction layer and expose APIs that each
of the routines can call to perform the essential functions
of fi nd/open/map/unmap/close. This is exactly what
{W32/Linux/OSX}/Clapzok does.

The virus begins by calculating the CRC32 of itself. It uses
a reverse polynomial (the usual ‘0xEDB88320’) to calculate
the hash value. The resulting value is used as the seed for
the random number generator in the virus. The virus also
relocates the pointers to the abstraction routines, according
to the load address of the virus code.

WINDOWS MODE

When running on Windows, the virus begins by resolving
the addresses of the APIs that it needs. It fi nds the base
address of kernel32.dll by searching backwards in memory,
beginning with the current thread return address. The virus
needs the addresses to perform the functions: fi nd, open,
seek, close, map, unmap, set fi le attributes, alloc and free,
as well as some directory handling. The virus also resolves
the addresses of the LoadLibrary() and GetProcAddress()
APIs. The virus uses hashes instead of names, and
calculates the hash of every exported function in kernel32.
dll, one at a time, while trying to match the few that are of
interest. Once every exported function has been hashed, the
virus checks if it has found all of the APIs that it needs, and
exits if not.

The virus attempts to load sfc.dll. If it succeeds, it uses
the GetProcAddress() API to fetch the address of the
SfcIsFileProtected() API. The reason the virus uses the
GetProcAddress() method instead of the hash method
is because the API resolver in the virus code does not
support import forwarding. The problem with import
forwarding is that while the API name exists in the DLL,
the corresponding API address does not. If a resolver is not
aware of import forwarding, then it will retrieve the address
of a string instead of the address of the code. In the case
of the SfcIsFileProtected() API, the API is forwarded in
Windows XP and later from sfc.dll to sfc_os.dll.

The virus allocates a buffer, which is just over 2KB long,
to hold the results of the directory search. The virus

searches the current directory for all entries. It ignores any
fi le that is marked as offl ine, temporary, sparse, hidden,
or system, as well as devices and directories. The virus
also ignores any fi le that is smaller than 4KB, or that is
8MB or larger. For any fi les that remain (essentially, only
regular and read-only fi les), the virus determines the full
pathname, and checks if the fi le is protected by System
File Protection (if available). If the fi le is not protected,
the virus attempts to set the fi le attributes to a normal
writable fi le. There is a minor bug here, in that if the fi le
is subsequently deemed to be uninfectable because of its
size, or because it cannot be opened, the fi le attributes are
not restored.

The virus attempts to open the fi le in writable mode. If this
is successful, it increases the fi le size by 8KB, and then runs
the shared infection routine (see below).

LINUX MODE
When running on Linux, the virus begins by retrieving the
effective user ID, which it uses later. The virus opens the
current directory for reading, and requests one entry at a
time. It ignores all but regular fi les. It also ignores any fi le
that is smaller than 4KB, or that is 8MB or larger. If the
fi le belongs to the current user, then the virus sets the fi le
attributes to readable and writable.

The virus attempts to open the fi le in writable mode. If this
is successful, the virus increases the fi le size by up to 12KB,
rounded down to the nearest multiple of 4KB, and then runs
the shared infection routine (see below).

OS X MODE
When running on OS X, the virus begins by retrieving the
effective user ID, which it uses later. It allocates a block
of memory 32KB in size with read/write permissions.
The virus opens the current directory for reading, and
requests as many directory entries as will fi t into the block
of memory. The virus is only interested in regular fi les.
After examining each fi le in the buffer, it will request more
directory entries, and then examine those. This action will
repeat until there are no more entries to be found.

The virus has strange code in several places, where
a series of short branches are chained together for
no obvious reason. This may have been part of some
debugging code.

For each fi le that is found, the virus will query its attributes.
It checks for regular fi les (again), and ignores any fi le that
is marked as immutable, append-only, hidden, or opaque
(though this fl ag relates only to directories). The virus also
ignores any fi le that is smaller than 4KB, or that is 8MB or

MALWARE ANALYSIS 2

VIRUS BULLETIN www.virusbtn.com

8 JUNE 2013

larger. If the fi le belongs to the current user, then the virus
sets the fi le attributes to readable and writable.

The virus attempts to open the fi le in writable mode. If this
is successful, the virus increases the fi le size by up to 12KB,
rounded down to the nearest multiple of 4KB, and then runs
the shared infection routine (see below).

INFECTION STAGE
The virus maps a view of the entire fi le, and then checks
for the signatures of the fi le formats of interest. It is very
trusting of the fi le contents, to the extent that it uses no
exception handling at all, on any of the affected platforms.
As a result, any corrupted or crafted fi les will cause the
virus to crash.

WINDOWS INFECTION

For Windows fi les, the virus checks for the ‘MZ’ signature,
the lfanew fi eld being less than 4KB, the PE signature,
and the infection marker. The infection marker is that the
low word of the time stamp fi eld is 0x7dfb. It is not known
why this value was chosen. The virus checks the PE fl ags
fi eld for a 32-bit executable, which is not a system or DLL
fi le, and is not targeting a uni-processor environment. The
virus requires that the subsystem is GUI or CUI, that the
security table data directory size is zero, and that the fi le is
not a WDM driver. Interestingly, these are exactly the same
set of checks (in a slightly different order) as used by the
Chiton [1] family. This might be signifi cant (see below).
More interestingly, some of these checks are useless. Apart
from the ‘IMAGE_FILE_EXECUTABLE_IMAGE’ and
‘IMAGE_FILE_DLL’ fl ags in the Characteristics fi eld, all
of the other fl ags are ignored by Windows. This includes the
fl ag (‘IMAGE_FILE_32BIT_MACHINE’) that specifi es
that the fi le is for 32-bit systems.

If the fi le passes the fi ltering process, then the virus marks
it as infected. This has the effect that the fi le won’t be
examined again, even if infection fails. This behaviour
is different from ELF infection (see below). The virus
checks that the fi le has no more than 512 bytes of appended
data – the infection will be abandoned at this point if the
appended data exceeds this amount.

The algorithm for determining the size of the appended
data fi nds the last section and sums the physical offset and
its size. This works in most cases, but is incorrect. The last
section might be entirely virtual, in which case the physical
offset and size will be zero, and a previous section must be
examined to determine where the fi le ends. There is more
to the algorithm than simply this check, but the details are
beyond the scope of this article.

The virus sets the host entry point to point to the end of
the last section, and then appends the virus code to the
last section. The virus adjusts the active abstraction layer
table to use the Windows APIs, and then chooses a random
number for the multiplier in the host entry point equation
(see below). The virus chooses three more random numbers,
and encrypts three tables of bytes with the respective values.
The tables are texts that use different keys, so occasionally
at least one of them will be decoded and visible in a
replicant. The fi rst text contains the credits for the virus,
the second contains greetings to various people, and the
third text reads: ‘2874 bytes of (obsolete) MultiPlatform
Madness!’.

The virus increases the virtual size of the last section, if
needed, and marks the section as executable and readable. It
updates the size of the image, if needed, but does not update
the fi le’s checksum.

LINUX INFECTION

For Linux fi les, the virus checks for the ‘ELF’ signature,
a 32-bit LSB byte order with the proper format version,
and the infection marker in the padding area. The infection
marker is that the word at fi le offset 0x0b is 0x7dfb. The
virus checks for an executable fi le (as opposed to an object
fi le), a specifi c size for the EHDR structure, a specifi c size
for a Program Header Table entry, a specifi c size for a
Section Header Table entry, and that the Program Header
Table is at a fi xed offset. The virus checks that the fi le is
targeting either an Intel 80386-based CPU or a reserved
value which was intended to indicate ‘Intel 80486’ but
which has never been used. This last check is similar to
Windows viruses comparing the Machine fi eld to 0x14d
(IMAGE_FILE_MACHINE_I386 + 1), and is equally
meaningless. The virus ignores fi les that contain more than
30 Program Header Table entries.

If the fi le passes the fi ltering process, then the virus marks
it as infected. Unlike the Windows infection method, the fi le
will always be infected when this routine completes. It is
not known which behaviour was intended to be the ‘correct’
one, but it seems more likely that it was this one, and that
the Windows version is the anomaly.

The virus assumes that the Section Header Table exists (it
is optional), and adds 4KB to the Section Header Table
offset. It then fetches the Program Header Table offset
again, seemingly having forgotten that it knows the offset
already. The virus examines each entry in the Program
Header Table, and assumes that at least one Program
Header Table entry exists (for well-formed fi les, it is
required). The virus watches specifi cally for the entry that
points to the Program Header Table itself, and also the

VIRUS BULLETIN www.virusbtn.com

9JUNE 2013

entry that points to the loadable segment that holds the
EHDR structure. All other entries have their fi le offset
increased by 4KB.

For the loadable segment that holds the EHDR structure,
the virus increases the fi le and memory sizes by 4KB, and
marks the segment as executable and readable. The virus
relies on fi nding this segment, but for some versions of
Linux, it does not need to exist.

For the two entries of interest, the virus reduces the virtual
and physical addresses by 4KB, to prevent any alteration
to the rest of the loaded image. It shifts the entire fi le down
in memory by 4KB, and then examines each entry in the
Section Header Table. The virus assumes that at least one
Section Header Table entry exists. The virus updates the fi le
offset for each entry.

After the entries have been updated, the virus fetches the
virtual address of the EHDR from the loadable segment that
holds it. The virus sets the host entry point to point to the
end of the Program Header Table, and then copies the virus
code to the end of the Program Header Table. The virus
adjusts the active abstraction layer table to use the Linux
APIs, and then chooses a random number for the multiplier
in the host entry point equation (see below). The virus
chooses three more random numbers, and encrypts the three
tables of bytes with the respective values, as above.

OS X INFECTION (1)

For OS X fi les, the virus checks for the presence of the
‘MACH-O’ signature, that the fi le is targeting an Intel
80386 or better CPU, that the fi le is executable, and that
there is at least one loader command. The virus examines
each entry in the command table, and watches specifi cally
for the entry that describes a segment, and the entry that
describes a thread. There is a minor bug here, which is that
the virus checks only the low byte of the command value,
so it could potentially be fooled by entirely unrelated (but as
yet undefi ned) commands.

If the segment descriptor command is seen, and if the virus
has not already seen the __PAGEZERO segment, then the
virus checks if the virtual address and fi le size are zero for
the segment. If they are, then the virus remembers that it has
now seen the __PAGEZERO segment.

If the thread descriptor command is seen, and if the virus
has not yet seen the required thread state, then the virus
checks the ‘fl avour’ of the structure. If the fl avour identifi es
the structure as being for the Intel 80386 format, then the
virus remembers that it has seen the thread state.

Once all of the entries have been examined, and if both the
segment descriptor and thread descriptor have been seen,

then the virus rounds the fi le size up to the next multiple of
4KB. The virus sets the virtual size of the __PAGEZERO
segment to 4KB (even though the fi eld holds this value
already), sets the fi le offset to point to the new end of the
fi le, and sets the physical size to the size of the virus code.
This serves as the infection marker, since the virus will skip
any segment that has a non-zero fi le size, so it will never
fi nd the __PAGEZERO structure again.

The virus increases the fi le size by the size of virus, and
marks the segment as executable and readable. The virus
sets the host entry point to zero (that is, the start of the
__PAGEZERO data). This infection method is identical
to the one used by the Macarena [2] virus (and this
one appears to be only the second virus ever to use the
method). Even the logic is almost identical. The fact that
the credits for this virus contain the name of someone
other than the author of Macarena suggests that the author
of this virus relied very heavily on the source code of the
Macarena virus.

The virus appends itself to the fi le, adjusts the active
abstraction layer table to use the OS X APIs, and then
chooses a random number for the multiplier in the host
entry point equation (see below). The virus chooses three
more random numbers, and encrypts the three tables of
bytes with the respective values, as above.

OS X INFECTION (2)

The virus also checks for the MACH-O ‘universal binary’
(an archive format that contains at least one MACH-O fi le)
signature. If it is found, then the virus requires that there is
at least one architecture (at least one MACH-O fi le) in the
archive. The virus checks that the last MACH-O fi le in the
archive is targeting an Intel 80386 or better CPU, that the
fi le has no appended data, and that the last fi le is a MACH-
O fi le. If so, then the infection proceeds as for the MACH-O
method described above. If the fi le is infected successfully,
then the virus updates the size of the MACH-O fi le in the
archive header.

FILE CLOSE

When the infection process exits – regardless of the cause
– the virus unmaps the view of the fi le, restores the fi le size
if the infection was abandoned, closes the fi le, and restores
the fi le times.

WINDOWS MODE

After the infection stage has completed in Windows mode,
the virus restores the fi le attributes. The virus continues

VIRUS BULLETIN www.virusbtn.com

10 JUNE 2013

its search of all fi les in the current directory. After the
search has completed, the virus switches to the ‘Windows’
directory, and attempts to infect all fi les in that directory.
The virus does the same for the ‘System’ directory. This
is a very old-school idea, since newer operating systems
do not allow the arbitrary writing of fi les in either of these
directories, and most of the fi les will be protected by the
System File Protection in any case.

LINUX AND OS X MODE

After the infection stage has completed in Linux and OS X
modes, the virus checks if the original fi le had any fi le
attributes set. If none were set, then it does not restore
any. This could be considered a bug since the fi le is now
accessible, where it was not before.

The virus continues its search of all fi les in the current
directory. After the search has completed, and if the current
user is the root user, then the virus attempts to change to
the ‘/bin’ directory and infect all fi les in that directory. The
virus does the same for the ‘/usr/bin’ directory.

CLEAN-UP

After all fi les have been examined in any of the modes, the
virus restores the current directory and prepares to transfer
control to the host. The host entry point is not stored as
a plain value. Instead, the virus solves an equation to
recover the value. The virus carries the multiplier and
the answer, and intends to determine the multiplicand.
The equation is solved in a brute-force manner. Once the
value has been recovered, the virus jumps to the original
entry point.

CONCLUSION

The abstraction method for cross-platform infection is a
very powerful technique to simplify the virus code and
reduce its size. It seems likely that we will see other viruses
using the same technique in the future, if only to further
improve on the idea.

REFERENCES

[1] Ferrie, P. Unexpected Resutls [sic]. Virus Bulletin,
June 2002, p.4. http://www.virusbtn.com/pdf/
magazine/2002/200206.pdf.

[2] Ferrie, P. Do the Macarena. Virus Bulletin,
January 2007, p.4. http://www.virusbtn.com/pdf/
magazine/2007/200701.pdf.

GREETZ FROM ACADEME:
CONTENT-AGNOSTIC MALWARE
PROTECTION
John Aycock
University of Calgary, Canada

There is often a disconnect between academic security
research and anti-malware industry research – in both
directions. This month, Dr John Aycock, Associate
Professor at the Department of Computer Science,
University of Calgary, embarks on a new regular feature
in which each month he will pick some of the work going
on in academic circles and summarize the key points. Ed.

One of the things that has
repeatedly struck me, in the
decade that I’ve been involved
with the AV community, is the
huge rift that exists between
industry and academia. On the
one hand, I’ve seen industry
presentations that overlook work
done – sometimes years before –
by academic researchers. On the
other hand, I’ve seen academic
papers in reputable publications

that make naïve statements about how AV products work, or
that completely ignore previous industry work.

What I want to do with this regular feature is to help
with one side of the equation. Each month, I’ll highlight
some recent academic work that bears relevance to the AV
community.

It seems fair to start with the paper I was looking at when
the idea came to me.

CAMP: CONTENT-AGNOSTIC MALWARE
PROTECTION

‘CAMP: Content-Agnostic Malware Protection’ [1] was
presented at NDSS, the Network and Distributed System
Security Symposium [2], in February 2013, and published
by the organizer of the event, the Internet Society. The fi ve
authors (although perhaps ‘campers’ would be a better term)
are all affi liated with Google.

As a glimpse into academic publishing, NDSS itself is a
well-established venue: this year was the 20th time the
Symposium had been run, and it has a consistently low
acceptance rate for papers – just under 19% this year. Full

SPOTLIGHT

http://www.virusbtn.com/pdf/magazine/2002/200206.pdf
http://www.virusbtn.com/pdf/magazine/2007/200701.pdf

VIRUS BULLETIN www.virusbtn.com

11JUNE 2013

papers are submitted for review, so when referees read and
rank the papers they are essentially judging the fi nished
product.

In summary, what CAMP does is extend Google’s Chrome
browser. When a user downloads a binary when using
Chrome+CAMP, the browser decides if the binary is
naughty or nice by applying three checks. First, it uses a
blacklist, where the binary’s URL is compared against a list
of known malicious URLs. Second, a whitelist comes into
play; domains and code signers that have refrained from
pumping out malware for three months are whitelisted. The
fi rst two checks are performed locally and, arguably, the
underlying basis of these lists is one of reputation. Finally,
if no defi nitive decision can be made based on the fi rst two
checks, attributes of the binary and its location are launched
into the cloud for a reputation assessment with a more
global view.

Academic papers should always give enough detail for the
work to be repeated, in theory, and the CAMP paper doesn’t
disappoint; there are many goodies to be mined from the
paper both about CAMP’s implementation and about its
extremely high accuracy.

The paper rang a bell for me when I read it, because it
reminded me of a very interesting talk I heard at VB2009
by researchers from Symantec about detecting malware
with... wait for it... reputation [3]. The CAMP paper
doesn’t cite this work, but it does mention Microsoft’s
SmartScreen Application Reputation system in IE 9
[4, 5]. The authors characterize SmartScreen as ‘closely
related to our work’, which is academic-speak for ‘let the
hair-splitting begin’.

On the surface, Google would appear to be the latecomer
to the reputation party, but it could also be seen the other
way around: the company’s bread-and-butter PageRank
algorithm is really just a type of reputation score, albeit
applied in a different context. Context can be critical,
of course, and in the meantime I see that a number of
related patents and patent applications for reputation-
based malware detection have appeared. A quick search
for a few of the usual suspects turned up some Symantec
patents for malware detection [6, 7] and reducing false
positives [8] with reputation, and some Microsoft patent
applications for reputation-based malware detection
[9, 10]. (I should point out that I’m not a lawyer, and
I’m not making any judgement about the claims of these
patents. I’m mentioning them merely to connect up some
related work.)

Reputation seems to be here to stay. Given the title of this
column, I should probably end the fi rst instalment with
a shout-out to my academic homies or something, but so
far they have all been strangely reluctant to disclose their

handles; for now, I’ll have to stick with the secret academic
handshake.

REFERENCES

[1] Rajab, M. A.; Ballard, L.; Lutz, M.; Mavrommatis,
P.; Provos, N. CAMP: Content-Agnostic Malware
Protection. 20th Annual Network & Distributed
System Security Symposium, 2013.

[2] NDSS Symposium. http://www.internetsociety.org/
events/ndss-symposium.

[3] Nachenberg, C.; Ramzan, Z.; Seshadri, V.
Reputation: A new chapter in malware protection.
19th Virus Bulletin Conference, 2009.
http://www.virusbtn.com/conference/vb2009/
abstracts/NachenbergSeshadriRamzan.xml.

[4] Colvin, R. ‘Stranger Danger’ – Introducing
SmartScreen Application Reputation.
http://blogs.msdn.com/b/ie/archive/2010/10/13/
stranger-danger-introducing-smartscreen-
application-reputation.aspx, October 2010.

[5] Haber, J. SmartScreen Application Reputation
in IE9. http://blogs.msdn.com/b/ie/
archive/2011/05/17/smartscreen-174-application-
reputation-in-ie9.aspx, May 2011.

[6] Glick, A.; Graf, N.; Smith, S. Systems and methods
for using reputation data to detect packed malware.
United States Patent #8,336,100, December 2012.
http://www.google.com/patents/US8336100.

[7] Nachenberg, C. S. Systems and methods for using
reputation data to detect shared-object-based
security threats. United States Patent #8,225,406,
July 2012. http://www.google.co.uk/patents/
US8225406.

[8] Nachenberg, C. S.; Griffi n, K. E. Reputation based
identifi cation of false positive malware detections.
United States Patent #8,312,537, November 2012.
http://www.google.co.uk/patents/US8312537.

[9] Oliver, D. et al. Reputation checking of executable
programs. United States Patent Application
#20120192275, July 2012. http://www.google.com/
patents/US20120192275.

[10] Franczyk, R.; Hulten, G.; Meek, C. A.; Newman,
A.; Rehfuss, S.; Scarrow, J. Application reputation
service. United States Patent Application
#20100005291, January 2010.
http://www.google.com/patents/US20100005291.

http://www.internetsociety.org/events/ndss-symposium
http://www.virusbtn.com/conference/vb2009/abstracts/NachenbergSeshadriRamzan.xml
http://blogs.msdn.com/b/ie/archive/2010/10/13/stranger-danger-introducing-smartscreen-application-reputation.aspx
http://blogs.msdn.com/b/ie/archive/2011/05/17/smartscreen-174-application-reputation-in-ie9.aspx
http://www.google.com/patents/US8336100
http://www.google.co.uk/patents/US8225406
http://www.google.co.uk/patents/US8312537
http://www.google.com/patents/US20120192275
http://www.google.com/patents/US20100005291

VIRUS BULLETIN www.virusbtn.com

12 JUNE 2013

JAVA: SETTING SECURITY
MANAGER TO NULL
Abhishek Singh & Shray Kapoor
FireEye, USA

Thanks to its widespread use in legitimate applications,
Java has seen a lot of use in malware recently – Java
exploits are being incorporated into the most popular
exploit kits, such as Blackhole and Redkit, and the number
of Java exploit samples in existence has never been
greater.

One very common technique used by malware authors to
exploit Java is to disable the security manager. Once the
security manager has been disabled, the next steps may
involve loading a malicious executable or connecting to a
malicious website.

As per the Java tutorial [1]:

‘A security manager is an object that defi nes a security
policy for an application. This policy specifi es actions
that are unsafe or sensitive. Any actions not allowed
by the security policy cause a SecurityException to
be thrown. An application can also query its security
manager to discover which actions are allowed.’

Once an application has a reference to the security
manager object, it can request permission to do specifi c
things. For example, System.exit, which terminates
the Java virtual machine with an exit status, invokes
SecurityManager.checkExit to ensure that the current
thread has permission to shut down the application.

SETTING SECURITY MANAGER = NULL

Based upon analysis of malicious jar fi les, this article
presents the logic used by malware authors to set the
security manager to null. Presence of the logic in a jar fi le
indicates that the fi le is malicious.

Direct calls

A commonly used technique is to make a direct call to
setSecurityManager(null). The direct call will remove
security from all the processes, providing direct access to
them. The presence of setSecurityManager(null) in a jar
fi le indicates that the fi le is suspicious and there is a high
probability that the code is malicious.

Setting the address to null

As per the pseudo code shown in Figure 1, fi rst the address
of the java/lang/system is located. The address is in the
variable ‘a1’. Once the address has been located, the memory
is traversed until the address of getSecurityManager() is
located. The address of getSecurityManager () is in variable
‘a2’. Once the address of getSecurityManager() has been
located, the wrmMem() function is called and null is written
directly to the address of getSecurityManager(), thus
disabling the security manager.

Figure 1: Setting getSecurityManager to null.

Using Access Control

The fi rst part of the pseudo code shown in Figure 2
creates a statement instance called ‘s’, which will call
setSecurityManager(). Later, AccessControlContext ac
is created. AccessControlContext takes in the parameter

Figure 2: Using access control to disable the security manager.

FEATURE 1

VIRUS BULLETIN www.virusbtn.com

13JUNE 2013

ProtectionDomain pd, which has full access. The
SetField API sets the value of the Statement.acc
private fi eld to AccessControlContext ac, giving it a
full set of permissions. Finally, statement.execute()
is called, which is executed with full permissions
and can be used to disable the security manager.

Using a trusted method chain

This method involves calling Statement.invoke()
to disable the security manager indirectly using
refl ection. The malicious applet executes the
following steps:

1. The code creates a subclass of
java.beans.Expression. We will refer to this
class as ‘PseudoClass1’. The constructor of
this class calls its superclass – the constructor
of Expression.

2. Next, it creates another class, ‘PseudoClass2’,
which extends the ‘PseudoClass1’ and
implements the Map.Entry interface, as shown
in Figure 3. The constructor of this class calls
the constructor of its superclass, which in turn
invokes the java.beans.Expression constructor.
The getKey() method of Map.Entry is implemented to
return null.

3. ‘PseudoClass2’ is instantiated by passing
System.class, setSecurityManager and an Object
array whose length is 1, to its constructor.

4. A HashSet instance is created and the PseudoClass
instance is added to it.

5. An instance of an anonymous subclass of HashMap
is created to return the HashSet object created in
step 4, using the entrySet() method.

6. The instance of the anonymous subclass of HashMap
created in step 5 is then added to a JList instance.
Later in the code, the JList instance is rendered on a
visible component.

While rendering, the JList instance calls the toString()
method on all its content including the HashMap object
that was added to the JList. The toString() on the
HashMap instance calls the inherited toString() from
java.util.AbstractMap, iterating over the list returned by
the entrySet() method that was overridden to return the
HashSet object containing the PseudoClass2 instance.
The getKey() and getValue() methods are then called
on the PseudoClass2 instance, which in turn calls the
implemented getKey() method, returning null, and the
Expression.getValue() method, which was inherited from
java.beans.Expression. The Expression getValue() calls

the Statement invoke() method, which then calls the
setSecurityManager method that was passed as the second
argument while initializing PseudoClass2, with an Object
array argument containing a single uninitialized object
that acts as ‘null’ while calling setSecurityManager via
refl ection, thus disabling the security manager.

CONCLUSION
Java is very widely used and as a result is very popular
among malware authors and exploit developers. One of the
most commonly used techniques to compromise a machine
running Java is to disable the Java security manager. In
this article we have presented the code segment and logic
for exploitation of a vulnerability to disable the security
manager.

REFERENCES
[1] The Security Manager. The Java Tutorials.

http://docs.oracle.com/javase/tutorial/essential/
environment/security.html.

At the VB2013 conference in October, Xinran Wang, of
Palo Alto Networks, will detail the Java security model
and demonstrate several recent zero-day exploits before
presenting a dynamic analysis and detection tool for Java
exploits. See http://www.virusbtn.com/conference/vb2013/
programme for details.

Figure 3: PseudoClass1 and PseudoClass2.

http://docs.oracle.com/javase/tutorial/essential/environment/security.html
http://www.virusbtn.com/conference/vb2013/programme/index

VIRUS BULLETIN www.virusbtn.com

14 JUNE 2013

BITCOIN MINING: INVESTING
IN THE FUTURE OF THE
UNDERGROUND MARKET
Micky Pun
Fortinet, Canada

The exchange rate of the digital currency Bitcoin (BTC)
passed the US$200/BTC1 mark earlier this year – a fact that
has not escaped the attention of cybercriminals who have
sought ways to capitalize on the popularity and increasing
value of the currency. This article will take a look at the
latest Bitcoin operation in the cybercrime world and analyse
the latest Bitcoin-mining malware family.

BITCOIN MALWARE LANDSCAPE
There are three major types of Bitcoin-related malware:

1. Wallet-stealing

2. Bitcoin-mining (or ‘freeloading’)

3. A combination of the above

As the name suggests, wallet-stealing malware focuses on
illegally accessing Bitcoin ‘wallets’. A Bitcoin wallet is
loosely the equivalent on the Bitcoin network of a physical
wallet. The wallet contains private keys which allow the user
to spend the Bitcoins allocated to their Bitcoin addresses [1].
An online wallet can be compromised by having its login
information stolen, while an offl ine wallet can be ‘stolen’ by
infecting the Bitcoin-mining client or simply retrieving the
wallet fi le if it is not encrypted in the system.

Bitcoin mining is the process of making computer hardware
perform mathematical calculations for the Bitcoin network
to confi rm transactions and increase security. As a reward,
Bitcoin miners can collect fees for the transactions they
confi rm, along with newly created Bitcoins [2]. Where
Bitcoin-mining malware is concerned, a Bitcoin miner fi rst
has to secretly be installed on a victim’s system. This will
then join the Bitcoin pool and start mining for the criminal’s
account.

The third kind of Bitcoin malware combines both wallet
stealing and Bitcoin mining, and has been seen in botnets
such as Kelihos.

In this article, we will focus on the latest Bitcoin-mining
malware distributed by SkyBot and NgrBot. (To avoid
confusion with legitimate Bitcoin miners, I will refer to this
type of malware as Bitcoin ‘freeloaders’.)

REVISITING THE VETERAN
Before examining the latest Bitcoin freeloader, it is worth

looking back at what one looked like two years ago.
In August 2011, there was a Bitcoin freeloader (MD5:
a9c88a209db76deb4fe9f1a9f8f47971) in the wild which
used the same version of the Ufasoft Bitcoin miner as is
used by the latest one. This malware, detected by many
vendors as Hstart/Hiddenstart, featured a trivial payload
delivery method. A WinRar fi le with self-extracting archive
using a confi guration fi le (Figure 1) would load the launcher
(‘hstart.exe’) after decompression.

Figure 1: Confi g fi le which automatically runs the malicious
executable after decompression.

The launcher would then create a process that runs a
malicious batch fi le (‘x.bat’ in Figure 1). The malicious batch
fi le would execute the Ufasoft Bitcoin miner (‘x11811.exe’)
with commands instructing it to utilize the current machine as
a Bitcoin miner contributing to the criminal’s account.

Figure 2: Batch fi le containing Bitcoin-mining commands.

DISSECTING THE MALWARE
Detected by Fortinet as W32/CoinMine.UIE!tr, the latest
Bitcoin freeloader (MD5: 26ed87a390426197599a08443a4
e64ac) has some similarities with the earlier one. Since the
system has already been compromised by the bot client prior
to downloading the freeloader, the binary is not packed or
encrypted. Hidden behind some visually obfuscating codes
and anti-debug tricks, the malicious part of the freeloader
is not apparent at fi rst glance and could easily be mistaken
for a legitimate Bitcoin miner by an anti-virus engine. In
the resource section of the executable, there is a ‘DATA’
section which stores an unencrypted version of Ufasoft
Bitcoin miner 0.20 (DLL). Most importantly, the command
that ensures the Bitcoin miner is run for the criminal’s gain
is stored in the ‘CONFIG’ section. Before executing the
payload, the malware will fi rst add auto-run registry entries
to ensure that it runs every time the computer is started.
After that, the malware creates a suspended new process (see
Figure 3) with the current executable fi le using commands
extracted from the ‘CONFIG’ resource. This new process
makes detecting the malware more diffi cult.

FEATURE 2

VIRUS BULLETIN www.virusbtn.com

15JUNE 2013

Obviously, the original malicious executable would not be
able to interpret the commands called. The newly created
process is intended as a platform for the malware to inject
the legitimate Bitcoin miner such that when the process
is eventually resumed, it will run the command that tells
the compromised computer to start putting money into the
criminal’s pocket (see Figure 4).

Figure 4: Injecting the legitimate Bitcoin miner into
memory with malicious commands.

FOLLOWING THE MONEY
The diagram shown in Figure 5 illustrates how the money
made through mining on the victim’s computer reaches
the criminal’s pocket. As seen in the previous section, the
malware will execute a command that enrols the victim’s
computer in a mining activity. This activity was assigned
to the criminal when an account was created at the mining
pool server. When the victim’s computer sends a ‘get work’
request to the pool server through the legitimate Bitcoin

miner client, it will
receive a mathematical
problem to solve. All
computers infected
with this malware
will perform the same
actions and join the pool
involuntarily. As a result,
the number of miners

under the criminal’s account increases and the percentage
payout to this account when a solution is reached will also
increase. The newly created Bitcoins will be sent to Bitcoin
addresses that are under the criminal’s control and it will
be impossible to trace back to the criminal because there
are numerous ways in which the Bitcoins can be retrieved
anonymously. For example, for only a 0.5% transaction fee,
the ‘send shared’ privacy service will break the chain of
addresses by swapping your Bitcoins with those of multiple
users. With various Bitcoin mixing (‘laundering’) services
available on the Internet, Bitcoin’s anonymity makes it easy
for an unskilled person to engage in criminal activity.

Figure 5: The Bitcoin ‘freeloading’ scenario.

Table 1 summarizes the parameters used by this family of
Bitcoin-mining malware.

From the table, we can tell that the criminal uses a diverse
range of pool-mining methods offered by different servers.
Additional proxy servers are provided in certain cases to
enhance the victim miners’ productivity – which could, for
example, be affected by an unstable Internet connection.

Each transaction is deemed to be public knowledge as
network confi rmation is necessary. When a criminal decides
to show off the proof of his crime by using the address as
his username, it is possible to trace a fraction of the money
he has made from his victims. Indeed, we have encountered
this during our analysis. For example:

-o http://mining.eligius.st:8337 -u
1PyoNmwdNP7PQWQwjCLiK8Av5V9eAGhKcL -p x

The 34-byte number starting with 1 suggests that this

Figure 3: Suspended new process with malicious commands.

VIRUS BULLETIN www.virusbtn.com

16 JUNE 2013

username might be a transaction address. Searching the
database which holds information about all transactions can
show us how much money a criminal has made. The report
shown in Figure 6 shows that there were a lot of newly
generated coins – suggesting that this address was actively
engaged in mining activity during April.

The result shows that one of the addresses has made 1.75
BTC so far, which is roughly equivalent to US$350 at the
current market rate. That might not seem like much, but
we have to keep in mind that this is just one of the many
addresses that the criminal is using. In addition, the really
profi table part in the Bitcoin business is selling Bitcoins that
were previously mined or otherwise gained when their value
was low.

BITCOIN ROADMAP
The recent rise in Bitcoin value has given cybercriminals
signifi cant incentive to work on Bitcoin-related malware.
Unless the Bitcoin-mining software is re-implemented,
it will be more convenient for cybercriminals to take an
existing client and repackage it so that it executes the
malicious commands stealthily.

Thanks to its anonymity, Bitcoin is a favourable currency
among cybercriminals. However, it is unknown at this
time whether all these criminal activities will cripple the
Bitcoin economy. Since Bitcoin is a limited resource,
there will theoretically come a day when no more Bitcoins
can be mined. Some people might consider the current
Bitcoin-mining business a once-in-a-lifetime opportunity,
since only a reasonable amount of resources are needed to
generate revenue. This might not be the case in the future.
As Bitcoin has fi nally gained some major public attention
this year, we expect to see more advances in Bitcoin
malware in the near future.

REFERENCES
[1] http://bitcoin.org/en/vocabulary#wallet.

[2] http://bitcoin.org/en/vocabulary#mining.

Bitcoin pool server Proxy used

api.bitcoin.cz 80.83.125.243

pool.bitclockers.com

pit.deepbit.net

50btc.com apple.skc.su

eu.triplemining.com 74.208.213.196/74.208.170.
25/apple.skc.su

eu2.triplemining.com

stratum.triplemining.com 74.208.149.142

Btcguild.com 208.93.155.94

mine2.btcguild.com

De.btcguild.com 199.180.128.183

us2.eclipsemc.com

92.23.236.102

94.242.198.64

94.102.50.53

Eligiusshit.st

mining.eligius.st

uclid.es

ssl.nemaradio.net
(malicious domain for
hosting other malware)

apple.skc.su

vps.x1x2.in
(also hosting NgrBot in
France Paris Gandi)

Table 1: Summary of Bitcoin pool servers and proxies used
by criminals.

Figure 6: Transaction history of
PyoNmwdNP7PQWQwjCLiK8Av5V9eAGhKcL from

blockchain.info.

http://bitcoin.org/en/vocabulary#wallet
http://bitcoin.org/en/vocabulary#mining

VIRUS BULLETIN www.virusbtn.com

17JUNE 2013

TakeDownCon St Louis takes place 3–4 June 2013 in St Louis,
MO, USA. For details see http://www.takedowncon.com/stlouis/.

The 22nd Annual EICAR Conference due to be held in June has
been postponed until November. See http://www.eicar.org/.

Digital Enterprise Europe will be held 11–12 June 2013 in
Amsterdam, The Netherlands. For information about the event
see http://www.revolution1.plus.com/Digital_Enterprise_Europe_
Website/.

The CISO Roundtable and Summit will be held 12–14 June 2013
in Amsterdam, The Netherlands. For more information see
http://www.ciso-summit.com/europe/.

NISC13 will be held 12–14 June 2013. For more information see
http://www.nisc.org.uk/.

The 25th annual FIRST Conference takes place 16–21 June 2013
in Bangkok, Thailand. For details see http://conference.fi rst.org/.

Hack in Paris takes place 17–21 June 2013 in Paris, France. For
information see https://www.hackinparis.com/.

The 2013 USENIX Annual Technical Conference (ATC ’13)
takes place 26–28 June 2013 in San Jose, CA, USA. For details see
https://www.usenix.org/atc13/vb.

TakeDownCon Rocket City takes place 11–16 July 2013 in
Huntsville, AL, USA. Training days are 11–14 July, with the
conference running 15–16 July. See http://www.takedowncon.com/
rocketcity/.

DIMVA 2013 takes place 18–19 July 2013 in Berlin, Germany.
For details see http://dimva.sec.t-labs.tu-berlin.de/.

Black Hat USA will take place 27 July to 1 August 2013 in Las
Vegas, NV, USA. For more information see http://www.blackhat.com/.

DEF CON 21 will take place 1–4 August 2013 in Las Vegas, NV,
USA. For more information see https://www.defcon.org/.

The 22nd USENIX Security Symposium will be held 14–16
August 2013 in Washington, DC, USA. For more information see
http://usenix.org/events/.

VB2013 takes place 2–4 October 2013
in Berlin, Germany. The conference
programme and online registration are
now available – early bird rates apply until

15 June. See http://www.virusbtn.com/conference/vb2013/.

MALWARE 2013 takes place 22–24 October 2013 in Fajardo,
Puerto Rico, USA. See http://www.malwareconference.org/.

Ruxcon 2013 takes place 26–27 October 2013 in Melbourne,
Australia. See http://www.ruxcon.org.au/.

Oil and Gas Cyber Security will be held 25–26 November 2013,
in London, UK. For details see http://www.smi-online.co.uk/
2013cyber-security5.asp.

VB2014 will take place 24–26 September
2014 in Seattle, WA, USA. More
information will be available in due course at
http://www.virusbtn.com/conference/

vb2014/. For details of sponsorship opportunities and any other
queries please contact conference@virusbtn.com.

2013
BERLIN

SEATTLE
2014

END NOTES & NEWS
ADVISORY BOARD
Pavel Baudis, Alwil Software, Czech Republic

Dr Sarah Gordon, Independent research scientist, USA

Dr John Graham-Cumming, CloudFlare, UK

Shimon Gruper, NovaSpark, Israel

Dmitry Gryaznov, McAfee, USA

Joe Hartmann, Microsoft, USA

Dr Jan Hruska, Sophos, UK

Jeannette Jarvis, McAfee, USA

Jakub Kaminski, Microsoft, Australia

Jimmy Kuo, Microsoft, USA

Chris Lewis, Spamhaus Technology, Canada

Costin Raiu, Kaspersky Lab, Romania

Roel Schouwenberg, Kaspersky Lab, USA

Péter Ször, McAfee, USA

Roger Thompson, Independent researcher, USA

Joseph Wells, Independent research scientist, USA

SUBSCRIPTION RATES
Subscription price for Virus Bulletin magazine (including

comparative reviews) for one year (12 issues):

• Single user: $175

• Corporate (turnover < $10 million): $500

• Corporate (turnover < $100 million): $1,000

• Corporate (turnover > $100 million): $2,000

• Bona fi de charities and educational institutions: $175

• Public libraries and government organizations: $500

Corporate rates include a licence for intranet publication.

Subscription price for Virus Bulletin comparative reviews

only for one year (6 VBSpam and 6 VB100 reviews):

• Comparative subscription: $100

See http://www.virusbtn.com/virusbulletin/subscriptions/ for
subscription terms and conditions.

Editorial enquiries, subscription enquiries, orders and payments:

Virus Bulletin Ltd, The Pentagon, Abingdon Science Park, Abingdon,
Oxfordshire OX14 3YP, England

Tel: +44 (0)1235 555139 Fax: +44 (0)1865 543153

Email: editorial@virusbtn.com Web: http://www.virusbtn.com/

No responsibility is assumed by the Publisher for any injury and/or
damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any methods,
products, instructions or ideas contained in the material herein.

This publication has been registered with the Copyright Clearance
Centre Ltd. Consent is given for copying of articles for personal or
internal use, or for personal use of specifi c clients. The consent is
given on the condition that the copier pays through the Centre the
per-copy fee stated below.

VIRUS BULLETIN © 2013 Virus Bulletin Ltd, The Pentagon, Abingdon
Science Park, Abingdon, Oxfordshire OX14 3YP, England. Tel: +44
(0)1235 555139. /2013/$0.00+2.50. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

http://www.takedowncon.com/stlouis/
http://www.eicar.org/
http://www.revolution1.plus.com/Digital_Enterprise_Europe_Website
http://www.ciso-summit.com/europe/
http://www.nisc.org.uk/
http://conference.first.org/
https://www.hackinparis.com/
https://www.usenix.org/atc13/vb
http://www.takedowncon.com/rocketcity/
http://dimva.sec.t-labs.tu-berlin.de/
http://www.blackhat.com/
http://www.defcon.org/
http://usenix.org/events/
http://www.virusbtn.com/conference/vb2013/
http://www.malwareconference.org/
http://www.ruxcon.org.au/
http://www.smi-online.co.uk/2013cyber-security5.asp
http://www.virusbtn.com/conference/vb2014/
http://www.virusbtn.com/conference/vb2014/
mailto:conference@virusbtn.com
mailto:editorial@virusbtn.com
http://www.virusbtn.com/
http://www.virusbtn.com/subscriptions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

